scholarly journals LMI-Based Stability Criterion of Impulsive T-S Fuzzy Dynamic Equations via Fixed Point Theory

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ruofeng Rao ◽  
Zhilin Pu

By formulating a contraction mapping and the matrix exponential function, the authors apply linear matrix inequality (LMI) technique to investigate and obtain the LMI-based stability criterion of a class of time-delay Takagi-Sugeno (T-S) fuzzy differential equations. To the best of our knowledge, it is the first time to obtain the LMI-based stability criterion derived by a fixed point theory. It is worth mentioning that LMI methods have high efficiency and other advantages in largescale engineering calculations. And the feasibility of LMI-based stability criterion can efficiently be computed and confirmed by computer Matlab LMI toolbox. At the end of this paper, a numerical example is presented to illustrate the effectiveness of the proposed methods.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Xiongrui Wang ◽  
Ruofeng Rao ◽  
Shouming Zhong

Linear matrices inequalities (LMIs) method and the contraction mapping theorem were employed to prove the existence of globally exponentially stable trivial solution for impulsive Cohen-Grossberg neural networks (CGNNs). It is worth mentioning that it is the first time to use the contraction mapping theorem to prove the stability for CGNNs while only the Leray-Schauder fixed point theorem was applied in previous related literature. An example is given to illustrate the effectiveness of the proposed methods due to the large allowable variation range of impulse.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Janusz Brzdęk ◽  
Liviu Cădariu ◽  
Krzysztof Ciepliński

The fixed point method has been applied for the first time, in proving the stability results for functional equations, by Baker (1991); he used a variant of Banach's fixed point theorem to obtain the stability of a functional equation in a single variable. However, most authors follow the approaches involving a theorem of Diaz and Margolis. The main aim of this survey is to present applications of different fixed point theorems to the theory of stability of functional equations, motivated by a problem raised by Ulam in 1940.


2019 ◽  
Vol 09 (03) ◽  
pp. 1950021
Author(s):  
W. A. Kirk ◽  
Naseer Shahzad

The axiomatic approach to metric convexity goes back to the pioneering work of Karl Menger in 1928. This is an overview of this concept and the role it plays in metric fixed point theory especially in conjunction with spaces possessing a “hyperbolic” type structures. These include the CAT(0) spaces, hyperconvex metric spaces, and [Formula: see text]-trees. Much of the discussion involves the existence of “approximate” fixed point sequences for mappings satisfying weak contractive conditions. Applications of a well-known fixed point theorem due to Caristi are also included. These involve fixed and approximate fixed points for mappings satisfying local “directional” contractive and non-expansive conditions. Convexity plays a role in this part of the discussion as well. While the paper is semi-expository in nature, some detailed proofs appear here for the first time. Also the concept of a weak [Formula: see text]-directional contraction introduced in Sec. 8 appears to be new. Several suggestions for further research are also discussed.


2019 ◽  
Vol 14 (3) ◽  
pp. 311 ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Zakia Hammouch ◽  
Dumitru Baleanu

A virus that causes hepatitis E is known as (HEV) and regarded on of the reason for lever inflammation. In mathematical aspects a very low attention has been paid to HEV dynamics. Therefore, the present work explores the HEV dynamics in fractional derivative. The Caputo–Fabriizo derivative is used to study the dynamics of HEV. First, the essential properties of the model will be presented and then describe the HEV model with CF derivative. Application of fixed point theory is used to obtain the existence and uniqueness results associated to the model. By using Adams–Bashfirth numerical scheme the solution is obtained. Some numerical results and tables for arbitrary order derivative are presented.


1960 ◽  
Vol 34 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Richard G. Swan

2007 ◽  
Vol 16 (4) ◽  
pp. 375-398 ◽  
Author(s):  
Władysław Kulpa ◽  
Andrzej Szymanski

2013 ◽  
Vol 2013 ◽  
pp. 1-1 ◽  
Author(s):  
Wei-Shih Du ◽  
Erdal Karapınar ◽  
Lai-Jiu Lin ◽  
Gue Myung Lee ◽  
Tamaki Tanaka

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Chakkrid Klin-eam ◽  
Cholatis Suanoom

Fixed-point theory in complex valued metric spaces has greatly developed in recent times. In this paper, we prove certain common fixed-point theorems for two single-valued mappings in such spaces. The mappings we consider here are assumed to satisfy certain metric inequalities with generalized fixed-point theorems due to Rouzkard and Imdad (2012). This extends and subsumes many results of other authors which were obtained for mappings on complex-valued metric spaces.


Sign in / Sign up

Export Citation Format

Share Document