scholarly journals Isolation, Identification, and Characterization of a Cellulolytic Bacillus amyloliquefaciens Strain SS35 from Rhinoceros Dung

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Shuchi Singh ◽  
Vijayanand S. Moholkar ◽  
Arun Goyal

Cellulose hydrolyzing bacteria were isolated from rhinoceros dung and tested for clear zone formation around the colonies on the agar plates containing the medium amended with carboxymethylcellulose as a sole carbon source. Isolates were further screened on the basis of carboxymethylcellulase production in liquid medium. Out of 36 isolates, isolate no. 35 exhibited maximum enzyme activity of 0.079 U/mL and was selected for further identification by using conventional biochemical tests and phylogenetic analyses. This was a Gram-positive, spore forming bacterium with rod-shaped cells. The isolate was identified as Bacillus amyloliquefaciens SS35 based on nucleotide homology and phylogenetic analysis using 16S rDNA and gyrase A gene sequences.

2018 ◽  
Vol 8 (1) ◽  
pp. 42-50
Author(s):  
AMONO RACHEAL ◽  
CHRISTOPHER J. KASANGA ◽  
DENIS K. BYARUGABA

Racheal A, Kasanga CJ, Byarugaba DK. 2018. Identification and characterization of Flavobacteriaceae from farmed Oreochromis niloticusand Clarius garieoinus. Bonorowo Wetlands 2: 42-50. Bacteria under family Flavobacteriaceae (in this study were also referred to as Flavobacteria) are important pathogens of fish, people, many other animals and plants. In this study, Flavobacteria from Nile tilapia (Oreochromis niloticus) and African catfish (Clarius gariepinus) were identified and characterized from the selected farms in Uganda. Gill and skin swabs were obtained from a total of 119 fish from 19 farms and were dissected aseptically to sample internal organs. The samples were inoculated onto Sheih media and incubated at 25°C for 48 hours. The suspected isolates were identified by colon characteristics, conventional biochemical tests and API 20 NE kits. The isolates were grouped into eight based on colon characteristic similarity. One isolate was selected per group for 16S rRNA gene sequencing and identified using the EZbiocloud.net ID software. Phylogenetic analysis of selected isolates was performed using the 16S rRNA gene sequences in BioEdit and MEGA 7.0.2 software. Basing on extrapolation of sequence analysis of the selected isolates, out of the 86 isolates, Myroides marinus was the most predominant species taking up 4 of the 8 groups (60 isolates) in 13 farms. The rest of the groups comprised of; Acinetobacter pitti, one group (6 isolates) in 6 farms, Chryseobacterium gambrini 2 groups (3 isolates) in 3 farms and one isolate was unidentified, in 3 farms. However, a total of 16 isolates did not grow on sub culturing. Phylogenetic analysis indicated that M. marinus isolates grouped with other M. marinus isolates from gene bank with significant intra-species diversity which was also observed with C. gambrini isolates. All the sampled farms had at least one isolate of a Flavobacterium from Tilapia and/or Catfish. Pathogenicity studies should be conducted on the isolates to establish their importance as fish pathogens and transmission dynamics so that an appropriate control measure can be recommended.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongru Su ◽  
Eri Onoda ◽  
Hitoshi Tai ◽  
Hiromi Fujita ◽  
Shigetoshi Sakabe ◽  
...  

AbstractEhrlichia species are obligatory intracellular bacteria transmitted by arthropods, and some of these species cause febrile diseases in humans and livestock. Genome sequencing has only been performed with cultured Ehrlichia species, and the taxonomic status of such ehrlichiae has been estimated by core genome-based phylogenetic analysis. However, many uncultured ehrlichiae exist in nature throughout the world, including Japan. This study aimed to conduct a molecular-based taxonomic and ecological characterization of uncultured Ehrlichia species or genotypes from ticks in Japan. We first surveyed 616 Haemaphysalis ticks by p28-PCR screening and analyzed five additional housekeeping genes (16S rRNA, groEL, gltA, ftsZ, and rpoB) from 11 p28-PCR-positive ticks. Phylogenetic analyses of the respective genes showed similar trees but with some differences. Furthermore, we found that V1 in the V1–V9 regions of Ehrlichia 16S rRNA exhibited the greatest variability. From an ecological viewpoint, the amounts of ehrlichiae in a single tick were found to equal approx. 6.3E+3 to 2.0E+6. Subsequently, core-partial-RGGFR-based phylogenetic analysis based on the concatenated sequences of the five housekeeping loci revealed six Ehrlichia genotypes, which included potentially new Ehrlichia species. Thus, our approach contributes to the taxonomic profiling and ecological quantitative analysis of uncultured or unidentified Ehrlichia species or genotypes worldwide.


2006 ◽  
Vol 394 (3) ◽  
pp. 575-579 ◽  
Author(s):  
Sergey V. Novoselov ◽  
Deame Hua ◽  
Alexey V. Lobanov ◽  
Vadim N. Gladyshev

Sec (selenocysteine) is a rare amino acid in proteins. It is co-translationally inserted into proteins at UGA codons with the help of SECIS (Sec insertion sequence) elements. A full set of selenoproteins within a genome, known as the selenoproteome, is highly variable in different organisms. However, most of the known eukaryotic selenoproteins are represented in the mammalian selenoproteome. In addition, many of these selenoproteins have cysteine orthologues. Here, we describe a new selenoprotein, designated Fep15, which is distantly related to members of the 15 kDa selenoprotein (Sep15) family. Fep15 is absent in mammals, can be detected only in fish and is present in these organisms only in the selenoprotein form. In contrast with other members of the Sep15 family, which contain a putative active site composed of Sec and cysteine, Fep15 has only Sec. When transiently expressed in mammalian cells, Fep15 incorporated Sec in an SECIS- and SBP2 (SECIS-binding protein 2)-dependent manner and was targeted to the endoplasmic reticulum by its N-terminal signal peptide. Phylogenetic analyses of Sep15 family members suggest that Fep15 evolved by gene duplication.


2005 ◽  
Vol 71 (6) ◽  
pp. 3235-3247 ◽  
Author(s):  
Heath J. Mills ◽  
Robert J. Martinez ◽  
Sandra Story ◽  
Patricia A. Sobecky

ABSTRACT The characterization of microbial assemblages within solid gas hydrate, especially those that may be physiologically active under in situ hydrate conditions, is essential to gain a better understanding of the effects and contributions of microbial activities in Gulf of Mexico (GoM) hydrate ecosystems. In this study, the composition of the Bacteria and Archaea communities was determined by 16S rRNA phylogenetic analyses of clone libraries derived from RNA and DNA extracted from sediment-entrained hydrate (SEH) and interior hydrate (IH). The hydrate was recovered from an exposed mound located in the northern GoM continental slope with a hydrate chipper designed for use on the manned-submersible Johnson Sea Link (water depth, 550 m). Previous geochemical analyses indicated that there was increased metabolic activity in the SEH compared to the IH layer (B. N. Orcutt, A. Boetius, S. K. Lugo, I. R. Macdonald, V. A. Samarkin, and S. Joye, Chem. Geol. 205:239-251). Phylogenetic analysis of RNA- and DNA-derived clones indicated that there was greater diversity in the SEH libraries than in the IH libraries. A majority of the clones obtained from the metabolically active fraction of the microbial community were most closely related to putative sulfate-reducing bacteria and anaerobic methane-oxidizing archaea. Several novel bacterial and archaeal phylotypes for which there were no previously identified closely related cultured isolates were detected in the RNA- and DNA-derived clone libraries. This study was the first phylogenetic analysis of the metabolically active fraction of the microbial community extant in the distinct SEH and IH layers of GoM gas hydrate.


Author(s):  
Y. Murtala ◽  
B. C. Nwanguma ◽  
L. U. S. Ezeanyika

Background: Despite the banned on the use of dichlorodiphenyltrichloroethane (DDT) and other Persistent Organic Pollutants (POPs) by the Stockholm Convention for their toxicity, emerging shreds of evidence have indicated that DDT is, however, still in use in developing countries. This might increase the global burden of DDT contamination and its hazardous effects. Aim: This study focused on the isolation and characterization of p,p’-DDT-degrading bacterium from a tropical agricultural soil. Methodology: Standard isolation procedure was used for the screening and isolation of the strain. The 16S rRNA and phylogenetic analyses were used to identify the isolate and established protocols were followed to characterize the strain. Results: A new strain belonging to the genus Aeromonas was isolated from agricultural soil using minimal salt-p,p’-DDT enrichment medium. The 16S rRNA sequencing was used to identify the strain and the partial sequence was deposited in the NCBI GenBank as Aeromonas sp. Strain MY1. This mesophilic isolate was capable of utilizing up to 50 mgL-1 of p,p’-DDT as the sole carbon source at an optimum pH of 7.5 and optimum temperature of 35 °C within 120 h under aerobic conditions. Fe2+ (0.2 mgL-1) demonstrated a stimulatory effect on the p,p’-DDT degradation capacity by the strain MY1. However, Zn, Cu, Pb, Hg, Ag and Cr ions have demonstrated various patterns of inhibitory effect on the p,p’-DDT degradation capacity of the isolate at 0.2 mgL-1. The strain MY1 could be a promising candidate for the bioremediation of p,p’-DDT contaminant. Conclusion: Aeromonas sp. strain MY1 was capable of utilizing p,p’-DDT as a sole carbon source under aerobic conditions. The utilization capacity of the strain was influenced by some heavy metals. Fe was found to enhance the p,p’-DDT utilization capacity of the isolate at a lower concentration. While Zn, Cu, Pb, Hg, Ag and Cr showed various patterns of inhibitory effect.


Plant Disease ◽  
2015 ◽  
Vol 99 (3) ◽  
pp. 325-332 ◽  
Author(s):  
Zhenyue Lin ◽  
Jingjing Wei ◽  
Muqing Zhang ◽  
Shiqiang Xu ◽  
Qiang Guo ◽  
...  

Sugarcane twisted leaf disease, caused by Phoma sp., was first reported in Guangxi, China, in 2012, when more than 5% of sugarcane was infected in the field. Three single-spore isolates were recovered from symptomatic leaves. Sequences from five fungal loci, 28S nrDNA (LSU), 18S nrDNA (SSU), the internal transcribed spacer regions 1 and 2 and 5.8S nrDNA (ITS), β-tubulin (TUB), and the translation elongation factor alpha (TEF-α) were amplified from the disease-associated isolates. The twisted leaf disease pathogen was identified and formally described as Phoma sorghina var. saccharum through phylogenetic analyses, morphological observations, and the pathogenicity of the isolates on sugarcane. P. sorghina var. saccharum can be differentiated from related species based on the morphology of pycnidia and chlamydospores that formed regular, glabrous, papillate ostioles. Chlamydospore-anamorph was unicellular, botryoid-alternarioid shape, as well as the binucleate, frequently branched hyphae. We also showed that mycelial growth of P. sorghina var. saccharum was optimal at pH 4.0 and 20 to 25°C. Additionally, among 13 chemical compounds tested, carbendazim was found to be the most effective in suppressing the radial growth of the fungus. Mycelial growth in vitro was completely inhibited at concentrations of 100 and 50 ppm, and 87.6% of mycelial growth was inhibited at 10 ppm. Carbendazim is therefore a potentially effective fungicide to control this disease in China.


2013 ◽  
Vol 663 ◽  
pp. 749-752
Author(s):  
Xiu Yan Liu ◽  
Jing Li ◽  
Zheng Miao Xie

One strain of Candida L-2, capable of degrading azo dyes 4,5-Diamino-1-pyrazole sulfate, was isolated from a lab-scale sequence biological reactor (SBR) sludge treating textile effluent. The isolate was identified as Candida rugopelliculosa according to its physiological characteristics, biochemical tests, and 26S rDNA D1/D2 gene phylogenetic analysis.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3747 ◽  
Author(s):  
Weilong Kong ◽  
Shaozong Yang ◽  
Yulu Wang ◽  
Mohammed Bendahmane ◽  
Xiaopeng Fu

Aquaporins (AQPs) are essential channel proteins that execute multi-functions throughout plant growth and development, including water transport, uncharged solutes uptake, stress response, and so on. Here, we report the first genome-wide identification and characterization AQP (BvAQP) genes in sugar beet (Beta vulgaris), an important crop widely cultivated for feed, for sugar production and for bioethanol production. Twenty-eight sugar beet AQPs (BvAQPs) were identified and assigned into five subfamilies based on phylogenetic analyses: seven of plasma membrane (PIPs), eight of tonoplast (TIPs), nine of NOD26-like (NIPs), three of small basic (SIPs), and one of x-intrinsic proteins (XIPs). BvAQP genes unevenly mapped on all chromosomes, except on chromosome 4. Gene structure and motifs analyses revealed that BvAQP have conserved exon-intron organization and that they exhibit conserved motifs within each subfamily. Prediction of BvAQPs functions, based on key protein domains conservation, showed a remarkable difference in substrate specificity among the five subfamilies. Analyses of BvAQPs expression, by mean of RNA-seq, in different plant organs and in response to various abiotic stresses revealed that they were ubiquitously expressed and that their expression was induced by heat and salt stresses. These results provide a reference base to address further the function of sugar beet aquaporins and to explore future applications for plants growth and development improvements as well as in response to environmental stresses.


2016 ◽  
Vol 1 (3) ◽  
pp. 677-685 ◽  
Author(s):  
Chandan Kumar Sarker ◽  
Anowar Hossen ◽  
Md Abu Yousuf ◽  
Md Ala Uddin ◽  
Most Sumona Akter ◽  
...  

Sheep is the common name for a group of grazing mammals that may be either wild or domesticated; the domesticated varieties are amongst the most widely distributed types of domestic animal, found in nearly all countries. Bangladesh is a densely populated developing country and its economy is primarily based on agriculture. The current study was designed for isolation, identification and characterization of bacterial flora from the upper respiratory tract of sheep. Thirty (30) apparently healthy sheep were selected at the adjacent areas of Bangladesh Agricultural University (BAU) for this experiment. Swab samples were collected from nasal swabs (10), lung swabs (10) and tracheal swabs (10). All samples were subjected into inoculated on to bacteriological media (nutrient broth, nutrient agar, Salmonella-Shigella agar, MacConkey agar, blood agar, brilliant green agar). Furthermore, all of the bacterial isolates were characterized by Gram’s staining, biochemical tests (sugar fermentation tests, catalase test, coagulase test, indole test, MR-VP test), antibiotics sensitivity tests and pathogenicity tests. None of the isolated Bacillus, E. coli and Staphylococcus spp. was found to be pathogenic. Isolated Pasteurella spp. were found to be pathogenic as observed in different experimental models and showed a degree of variation in antibiotic drug sensitivity test. Ciprofloxacillin was sensitive to all of the isolated bacteria. Through the bacteria that were isolated from various organs of apparently healthy sheep is normal micro flora, however these may act as primary pathogen and may produce diseases when the sheep are immunologically suppressed due to severe stress conditions.Asian J. Med. Biol. Res. December 2015, 1(3): 677-685


Sign in / Sign up

Export Citation Format

Share Document