Nuclear Effects in Neutrino Interactions and Their Impact on the Determination of Oscillation Parameters
The quantitative description of the effects of nuclear dynamics on the measured neutrino-nucleus cross sections—needed to reduce the systematic uncertainty of long baseline neutrino oscillation experiments—involves severe difficulties. Owing to the uncertainty on the incoming neutrino energy, different reaction mechanisms contribute to the cross section measured at fixed energy and scattering angle of the outgoing lepton, and must therefore be consistently taken into account within a unified model. We research the theoretical approach based on the impulse approximation and the use of realistic nucleon spectral functions, allowing one to describe a variety of reaction mechanisms active in the broad kinematical range covered by neutrino experiments. The extension of this scheme to include more complex mechanisms involving the two-nucleon currents, which are believed to be important, is also outlined. The impact of nuclear effects on the determination of neutrino oscillation parameters is illustrated by analyzing the problem of neutrino energy reconstruction.