scholarly journals Microbial Corrosion of API 5L X-70 Carbon Steel by ATCC 7757 and Consortium of Sulfate-Reducing Bacteria

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Arman Abdullah ◽  
Nordin Yahaya ◽  
Norhazilan Md Noor ◽  
Rosilawati Mohd Rasol

Various cases of accidents involving microbiology influenced corrosion (MIC) were reported by the oil and gas industry. Sulfate reducing bacteria (SRB) have always been linked to MIC mechanisms as one of the major causes of localized corrosion problems. In this study, SRB colonies were isolated from the soil in suspected areas near the natural gas transmission pipeline in Malaysia. The effects of ATCC 7757 and consortium of isolated SRB upon corrosion on API 5L X-70 carbon steel coupon were investigated using a weight loss method, an open circuit potential method (OCP), and a potentiodynamic polarization curves method in anaerobic conditions. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were then used to determine the corrosion morphology in verifying the SRB activity and corrosion products formation. Results from the study show that the corrosion rate (CR) of weight loss method for the isolated SRB is recorded as 0.2017 mm/yr compared to 0.2530 mm/yr for ATCC 7757. The Tafel plot recorded the corrosion rate of 0.3290 mm/yr for Sg. Ular SRB and 0.2500 mm/yr forDesulfovibrio vulgaris. The results showed that the consortia of isolated SRB were of comparable effects and features with the single ATCC 7757 strain.

ROTOR ◽  
2017 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Naufan Arviansyah ◽  
Sumarji Sumarji ◽  
Digdo Listyadi Setyawan

This research have a purpuse to know corrosion rate in pipe X52 and A53 at oil sludge media caused BS and W. Corrosion is a damage of metal that occurs because reaction between metal with environtment and produce unwanted of corrosion product. Pipe X52 and A53 is a type of low carbon steel that use for fluid transportation system in industry. Oil sludge is a sediment of crude oil from main gathering storage and containing variouses elements. Oil sludge have a one of element is Basic Sediment and Water that is can make corrosion happen to distribution pipes. Measuring Method used in this research is weight loss method. The result of corrosion rate in Oil Sludge media containing 30,17% BS and W for pipe A53 is 1,64 x 10-2 mmpy and the result for pipa X52 is 2,47 x 10-2 mmpy. The result of corrosion rate in Oil Sludge media containing 60,67% BS and W for pipe A53 is 2,12 x 10-2 mmpy and for pipe X52 the result is 3,13 x 10-2 mmpy. The result of this research showed pipe A53 have more resistance than pipe X52. The corrosion is classified as uniform corrosion. Keywords : A53, Weight Loss, Oil Sludge, X52.


2011 ◽  
Vol 396-398 ◽  
pp. 1963-1968
Author(s):  
Shi Hong Zhang ◽  
Fei Kuang ◽  
Jin Zhong Zhang ◽  
Xiong Zhou ◽  
Gui Hong Lan ◽  
...  

The growth and the corrosion behaviors of thermophilic sulfate reducing bacteria (SRB), desulfotomaulum thermocisternum strain ST90, were studied in this work. It was found that the growth curves and the main reduction products were influenced greatly by the growth temperatures. The time of the exponential phase and the stable phase decreased with the increase of growth temperatures. The reduction product of this kind of SRB was mainly H2S when it grew at 60°C. With the decrease of growth temperatures, thiosulfate came up as an internal reduction product. The thiosulfate was re-reduced by SRB at the growth temperatures of 40 and 50°C. When the growth temperature came to 30°C, no H2S was generated. The regulation of corrosion rate changed was coincident with the changes of the main reduction products of the SRB. This kind of SRB could accelerate the corrosion rate of carbon steel when grew at higher temperature. But the corrosion rate of carbon steel could be inhibited when it grew at 30°C.


2011 ◽  
Vol 117-119 ◽  
pp. 999-1002
Author(s):  
Shu Qi Zheng ◽  
Chun Yu Li ◽  
Chang Feng Chen

The accelerated corrosion action of sulfur for carbon steel in wet H2S environment was studied by simulating the actual serviced environment. The weight-loss method, SEM, EDS and X-ray diffraction techniques are used to analyze the corrosion rate, the structure and the composition of the corrosion production formed in the environments. The results show that sulfur aggravated the corrosion sharply in wet H2S environment.


Author(s):  
Meryanalinda Meryanalinda ◽  
Dedy Rachman Ardian ◽  
Mochammad Shocib ◽  
Ahmad Yasin

Corrosion is a process of degradation metal quality which is very detrimental in the industry. Especially in an industries related to utilization of acidic liquids such assulfuric acid, hydrochloric acid, etc. If corrosion rate of carbon steel can be estimated, the prediction of remaining life of carbon steel, and the preventive methods of corrosionwould be more appropriate. This will reduce technical, economic and aesthetic losses. The aims of this study was to determine corrosion rate of carbon steel in sulfuric acid. This study used ASTM A 387 Grade 12 and ASTM A 283 Grade A carbon steel type fortank material, where one material is represented by 5 specimen. The corrosion rate of Specimens were measured by the weight loss method for 31 days. The 5 specimens were divided into 3 regions where specimens no.1 and 2 were immersed in  sulfuric acid , specimens no.3 were in the middle area or zone level (partially immersed), and specimens no.4 and 5 were not immersed in sulfuric acid. The highst corrosion rate occured on specimen No.3 with maximum corrosion rate was 0,097 mm/y for ASTM A 387 Gr 12 and 0,096 mm/y untuk material ASTM A 283 Gr A. The results of corrosion rate on ASTM A 387 Grade 12 material are lower than corrosion rate of ASTM A 283 Grade A material. This is caused by presence of Mo and Cr alloy elements in ASTM A 387 Grade 12.


2019 ◽  
Vol 86 (1) ◽  
Author(s):  
Giantommaso Scarascia ◽  
Robert Lehmann ◽  
Laura L. Machuca ◽  
Christina Morris ◽  
Ka Yu Cheng ◽  
...  

ABSTRACT Sulfate-reducing bacteria (SRB) are key contributors to microbe-induced corrosion (MIC), which can lead to serious economic and environmental impact. The presence of a biofilm significantly increases the MIC rate. Inhibition of the quorum-sensing (QS) system is a promising alternative approach to prevent biofilm formation in various industrial settings, especially considering the significant ecological impact of conventional chemical-based mitigation strategies. In this study, the effect of the QS stimulation and inhibition on Desulfovibrio vulgaris is described in terms of anaerobic respiration, cell activity, biofilm formation, and biocorrosion of carbon steel. All these traits were repressed when bacteria were in contact with QS inhibitors but enhanced upon exposure to QS signal molecules compared to the control. The difference in the treatments was confirmed by transcriptomic analysis performed at different time points after treatment application. Genes related to lactate and pyruvate metabolism, sulfate reduction, electron transfer, and biofilm formation were downregulated upon QS inhibition. In contrast, QS stimulation led to an upregulation of the above-mentioned genes compared to the control. In summary, these results reveal the impact of QS on the activity of D. vulgaris, paving the way toward the prevention of corrosive SRB biofilm formation via QS inhibition. IMPORTANCE Sulfate-reducing bacteria (SRB) are considered key contributors to biocorrosion, particularly in saline environments. Biocorrosion imposes tremendous economic costs, and common approaches to mitigate this problem involve the use of toxic and hazardous chemicals (e.g., chlorine), which raise health and environmental safety concerns. Quorum-sensing inhibitors (QSIs) can be used as an alternative approach to inhibit biofilm formation and biocorrosion. However, this approach would only be effective if SRB rely on QS for the pathways associated with biocorrosion. These pathways would include biofilm formation, electron transfer, and metabolism. This study demonstrates the role of QS in Desulfovibrio vulgaris on the above-mentioned pathways through both phenotypic measurements and transcriptomic approach. The results of this study suggest that QSIs can be used to mitigate SRB-induced corrosion problems in ecologically sensitive areas.


2017 ◽  
Vol 68 (10) ◽  
pp. 2389-2396
Author(s):  
Khoukhi Faiza ◽  
Salima Kebouche ◽  
Nacer Eddine Djelali ◽  
Mohamed Lamine Gana

The paper presents a studies for the development of new corrosion inhibitors by biotechnological way applicable to many areas of petroleum industry including, characterization of protective films on carbon steel and biocorrosion inhibition. Our research is oriented towards the isolation of new strains of bacteria from the sea waters of the Mediterranean region that have power (inhibitory and/or bactericidal that blocks the growth of sulfate-reducing bacteria responsible for microbiologically influenced by production of Pyocyanin (1 hydroxyphenazin) or 5-methylphenazin-1-one. Our first objective was to isolate the population of Pseudomonas Aerugenosa on a specific medium, characterization gram, then fermentation in a nutrient broth. The second objective of this study is evaluation of corrosion rate by weight loss method with injecting different dose of the crude enzyme extract CEE containing the methylphenazine (Pyocyanin). An efficacy test was performed on test kit vials containing the specific culture medium with the SRB contaminated with industrial injection water from SONAHESS region. The total disappearance of the SRB is 40% of CEE by blocking their metabolism in the growth phase confirms the efficiency of treatment.


2012 ◽  
Vol 58 (2) ◽  
Author(s):  
W. B. Wan Nik ◽  
S. Syahrullail ◽  
R. Rosliza ◽  
M. M. Rahman ◽  
M. F. R. Zulkifli

The aim of this study is to determine the corrosion effect of palm oil methyl ester (POME) on aluminium alloy 5083 (AA5083). The static immersion test was carried out at 60°C for 68 days according to ASTM G–31–72. The corrosion analysis was done by using weight loss method and electrochemical test. The result from weight loss method shows the decreasing in weight loss of AA5083 which signifies the ability of POME to reduce corrosion rate. The electrochemical test shows the decreasing in polarization resistance,Rp, while the corrosion current densities, Icorr, increase. The corrosion rate reduces from 2.250mpy to 0.1946mpy. The low concentration of fatty acid C18:2 and high anti oxidant element contributes to the reduction of corrosion rate of AA5083 in POME.


Sign in / Sign up

Export Citation Format

Share Document