scholarly journals Direct-Write Ion Beam Lithography

2014 ◽  
Vol 2014 ◽  
pp. 1-26 ◽  
Author(s):  
Alexandra Joshi-Imre ◽  
Sven Bauerdick

Patterning with a focused ion beam (FIB) is an extremely versatile fabrication process that can be used to create microscale and nanoscale designs on the surface of practically any solid sample material. Based on the type of ion-sample interaction utilized, FIB-based manufacturing can be both subtractive and additive, even in the same processing step. Indeed, the capability of easily creating three-dimensional patterns and shaping objects by milling and deposition is probably the most recognized feature of ion beam lithography (IBL) and micromachining. However, there exist several other techniques, such as ion implantation- and ion damage-based patterning and surface functionalization types of processes that have emerged as valuable additions to the nanofabrication toolkit and that are less widely known. While fabrication throughput, in general, is arguably low due to the serial nature of the direct-writing process, speed is not necessarily a problem in these IBL applications that work with small ion doses. Here we provide a comprehensive review of ion beam lithography in general and a practical guide to the individual IBL techniques developed to date. Special attention is given to applications in nanofabrication.

Nano Letters ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 8597-8604 ◽  
Author(s):  
Rosa Córdoba ◽  
Dominique Mailly ◽  
Roman O. Rezaev ◽  
Ekaterina I. Smirnova ◽  
Oliver G. Schmidt ◽  
...  

Author(s):  
Kyle M. Winter ◽  
Steven B. Herschbein ◽  
Carmelo F. Scrudato ◽  
Brian L. Yates

Abstract Focused Ion Beam (FIB) circuit edit allows for rapid prototyping of potential semiconductor design changes without the need to run a full manufacturing cycle in a semiconductor Fab. By FIB editing a completed module, thorough testing on the bench or in a full system can be achieved. Logic can be toggled, validation of speed enhancements performed, and constructive and destructive failure analysis can be enabled. In order to fulfill all the needs of clients in a rapidly evolving SOC driven market, simply modifying existing devices by “rewiring” circuits is becoming insufficient. Often the team is tasked with making very repeatable structures to aid the circuit analysis group. These include relatively precise resistors for tuning RF circuits (part of an RC network), adding known loads or delays, et cetera. Naturally resistive FIB deposited metal lines connected to the existing circuitry can be used in this capacity. FIB chip edit is considered to be a “Direct Write” process. The beam pattern in conjunction with process gases defines the regions of milling and deposition. Unfortunately, FIB edit is rarely an exact science. In many cases, a number of characteristics seem to be outside the realm of precise repeatable control. This is evident not only in individual tool operational logs but also in FIB tool matching, where maintaining identical system performance within the lab is difficult or nearly impossible. These characteristics are highly dependent on precursor reservoir composition and flow, surface adsorption conditions, beam patterning integrity, and the total interaction space of competing back sputtering during the new material structure formation. Due to these factors, the shape, composition and electrical performance of metal and insulator depositions vary over an often unacceptable range. As a result, we were not meeting the needs of some critical customer applications. Direct written precision resistive structures displayed several issues for which iterative edits were required to compensate for variability. When attempting to create an exact resistance, this process was not reliable, nor was it repeatable enough for accurate circuit performance trimming. Space-constrained serpentine resistors or multiple discrete resistors side-by-side showed the greatest process variability. Metal deposition processes tend to be somewhat self-limiting, so thick boxprofile lines are difficult to form. Conductive material deposited outside of the pattern definition (overspray) results in line-to-line leakages. Attempts to remove the overspray thru ion beam assisted etch-back tends to damage the deposited conductors and underlying insulators. The low-k region between lines can become cross-linked, experience gallium doping, and become tungsten impregnated. This lowered the resistivity of the insulator, increased the resistivity of the conductor, and produced variability in the device which was especially an issue when dealing with varying initial substrates. GLOBALFOUNDRIES began a project to create a more robust repeatable resistive structure by removing several variables. Rather than direct writing lines onto a top surface layer, a confined deposition based on the concepts of dual damascene processing used with copper layers in modern semiconductor fabrication will be employed. The damascene process begins with the definition of a box to be filled with a conductive material. The process of ion beam gas assisted anisotropic etching/milling has a far more predictable outcome than ion beam induced deposition. It is possible to create a surface box mill or even a deep drilled via of desired dimensions with a more consistent repeatability. Deposition of tungsten into a confined region using, for example, a W(CO)6 precursor and a Ga+ ion beam results in an excellent via fill. Using this behavior, precision resistors can be created with metal deposition within the trenches which are created by the gas assisted mill. An enclosed space can be filled nearly void-free, and has repeatable electrical parameters. The self-limiting factors with tungsten deposition go away as sputtered material becomes trapped within the well resulting in a near limitless Zheight potential. The constant dielectric with a uniform and contained tungsten fill can allow for a well-defined resistivity for the FIB deposited tungsten material. Having a known resistivity, calculation of dimensions for resistive and inductive structures during the design process becomes feasible. With process variability under control, structures can be formed reliably enough to offer this as a service to customers.


2010 ◽  
Vol 16 (S2) ◽  
pp. 194-195 ◽  
Author(s):  
A Joshi-Imre ◽  
L Ocola ◽  
J Klingfus

Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.


2009 ◽  
Vol 74 ◽  
pp. 129-132 ◽  
Author(s):  
Harry J. Whitlow ◽  
Li Ping Wang ◽  
Leona Gilbert

Proton beam writing (PBW) is a MeV ion beam lithography technique that has gained interest in many biological applications such as fabricating microfluidic devices for Lab-On-a-Chip (LOC) applications where capillary forces are important for fluid flow. PBW has a unique capability of being able to direct-write patterns in thick (1-30µm) polymer resist layers with straight vertical sidewalls. It can be used to prepare master stamps and moulds for mass production in polymeric materials. A recent development, where the direct writing of an entire pattern element is carried out in parallel makes PBW especially well suited for Bio-MEMS LOC applications. In this study we have examined the flow dynamics using video microscopy of deionised water in fluidic channel patterns fluid reservoirs, capillary sections and a capillary pump written by PBW. The video microscopy data also demonstrated that the wetting behavior of the surface strongly influences the dynamics of fluid flow. This makes new approaches for LOC fabrication feasible and powerful.


1985 ◽  
Vol 45 ◽  
Author(s):  
A. A. Milgram ◽  
J. Puretz

ABSTRACTA focused ion beam of gallium was used to implant into the top layer of a bi-layer structure on a silicon wafer. The structures studied were spin-on glass/organic and electron beam deposited Si/organic. Plasma etch conditions were found which gave substantial etch rate differences between the implanted and non-implanted material. The material was then patterned by dry processing methods. The plasma etch produces a vertical wall 2.0 µm high with a rectangular profile free of debris. The variation in line width along the line is a small fraction of the line width. Or, the line width is constant along the line and is approximately equal to 0.4µm, the spot size of the focused ion beam on the wafer. The variation in line width as a function of implantation dose was determined and shown capable of yielding a reproducible line width. The results are shown to be superior to single resist exposure. Potential applications are presented.


Author(s):  
T. Yaguchi ◽  
M. Konno ◽  
T. Kamino ◽  
M. Ogasawara ◽  
K. Kaji ◽  
...  

Abstract A technique for preparation of a pillar shaped sample and its multi-directional observation of the sample using a focused ion beam (FIB) / scanning transmission electron microscopy (STEM) system has been developed. The system employs an FIB/STEM compatible sample rotation holder with a specially designed rotation mechanism, which allows the sample to be rotated 360 degrees [1-3]. This technique was used for the three dimensional (3D) elemental mapping of a contact plug of a Si device in 90 nm technology. A specimen containing a contact plug was shaped to a pillar sample with a cross section of 200 nm x 200 nm and a 5 um length. Elemental analysis was performed with a 200 kV HD-2300 STEM equipped with the EDAX genesis Energy dispersive X-ray spectroscopy (EDX) system. Spectrum imaging combined with multivariate statistical analysis (MSA) [4, 5] was used to enhance the weak X-ray signals of the doped area, which contain a low concentration of As-K. The distributions of elements, especially the dopant As, were successfully enhanced by MSA. The elemental maps were .. reconstructed from the maps.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiyu Sun ◽  
Wei Wu ◽  
Limei Tian ◽  
Wei Li ◽  
Fang Zhang ◽  
...  

AbstractNot only does the Dynastes tityus beetle display a reversible color change controlled by differences in humidity, but also, the elytron scale can change color from yellow-green to deep-brown in specified shapes. The results obtained by focused ion beam-scanning electron microscopy (FIB-SEM), show that the epicuticle (EPI) is a permeable layer, and the exocuticle (EXO) is a three-dimensional photonic crystal. To investigate the mechanism of the reversible color change, experiments were conducted to determine the water contact angle, surface chemical composition, and optical reflectance, and the reflective spectrum was simulated. The water on the surface began to permeate into the elytron via the surface elemental composition and channels in the EPI. A structural unit (SU) in the EXO allows local color changes in varied shapes. The reflectance of both yellow-green and deep-brown elytra increases as the incidence angle increases from 0° to 60°. The microstructure and changes in the refractive index are the main factors that influence the process of reversible color change. According to the simulation, the lower reflectance causing the color change to deep-brown results from water infiltration, which increases light absorption. Meanwhile, the waxy layer has no effect on the reflection of light. This study lays the foundation to manufacture engineered photonic materials that undergo controllable changes in iridescent color.


Sign in / Sign up

Export Citation Format

Share Document