scholarly journals Classification of the Quasifiliform Nilpotent Lie Algebras of Dimension 9

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mercedes Pérez ◽  
Francisco P. Pérez ◽  
Emilio Jiménez

On the basis of the family of quasifiliform Lie algebra laws of dimension 9 of 16 parameters and 17 constraints, this paper is devoted to identify the invariants that completely classify the algebras over the complex numbers except for isomorphism. It is proved that the nullification of certain parameters or of parameter expressions divides the family into subfamilies such that any couple of them is nonisomorphic and any quasifiliform Lie algebra of dimension 9 is isomorphic to one of them. The iterative and exhaustive computation with Maple provides the classification, which divides the original family into 263 subfamilies, composed of 157 simple algebras, 77 families depending on 1 parameter, 24 families depending on 2 parameters, and 5 families depending on 3 parameters.

2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Michel Goze ◽  
Elisabeth Remm

AbstractThe classification of complex or real finite dimensional Lie algebras which are not semi simple is still in its early stages. For example, the nilpotent Lie algebras are classified only up to dimension 7. Moreover, to recognize a given Lie algebra in the classification list is not so easy. In this work, we propose a different approach to this problem. We determine families for some fixed invariants and the classification follows by a deformation process or a contraction process. We focus on the case of 2- and 3-step nilpotent Lie algebras. We describe in both cases a deformation cohomology for this type of algebras and the algebras which are rigid with respect to this cohomology. Other


2018 ◽  
Vol 30 (1) ◽  
pp. 109-128 ◽  
Author(s):  
Leonardo Bagaglini ◽  
Marisa Fernández ◽  
Anna Fino

Abstract We show obstructions to the existence of a coclosed {\mathrm{G}_{2}} -structure on a Lie algebra {\mathfrak{g}} of dimension seven with non-trivial center. In particular, we prove that if there exists a Lie algebra epimorphism from {\mathfrak{g}} to a six-dimensional Lie algebra {\mathfrak{h}} , with the kernel contained in the center of {\mathfrak{g}} , then any coclosed {\mathrm{G}_{2}} -structure on {\mathfrak{g}} induces a closed and stable three form on {\mathfrak{h}} that defines an almost complex structure on {\mathfrak{h}} . As a consequence, we obtain a classification of the 2-step nilpotent Lie algebras which carry coclosed {\mathrm{G}_{2}} -structures. We also prove that each one of these Lie algebras has a coclosed {\mathrm{G}_{2}} -structure inducing a nilsoliton metric, but this is not true for 3-step nilpotent Lie algebras with coclosed {\mathrm{G}_{2}} -structures. The existence of contact metric structures is also studied.


1982 ◽  
Vol 34 (6) ◽  
pp. 1215-1239 ◽  
Author(s):  
L. J. Santharoubane

Introduction. The natural problem of determining all the Lie algebras of finite dimension was broken in two parts by Levi's theorem:1) the classification of semi-simple Lie algebras (achieved by Killing and Cartan around 1890)2) the classification of solvable Lie algebras (reduced to the classification of nilpotent Lie algebras by Malcev in 1945 (see [10])).The Killing form is identically equal to zero for a nilpotent Lie algebra but it is non-degenerate for a semi-simple Lie algebra. Therefore there was a huge gap between those two extreme cases. But this gap is only illusory because, as we will prove in this work, a large class of nilpotent Lie algebras is closely related to the Kac-Moody Lie algebras. These last algebras could be viewed as infinite dimensional version of the semisimple Lie algebras.


Author(s):  
E. R. Shamardina

In this paper, we study the classification of three-dimensional Lie al­gebras over a field of complex numbers up to isomorphism. The proposed classification is based on the consideration of objects invariant with re­spect to isomorphism, namely such quantities as the derivative of a subal­gebra and the center of a Lie algebra. The above classification is distin­guished from others by a more detailed and simple presentation. Any two abelian Lie algebras of the same dimension over the same field are isomorphic, so we understand them completely, and from now on we shall only consider non-abelian Lie algebras. Six classes of three-dimensional Lie algebras not isomorphic to each other over a field of complex numbers are presented. In each of the classes, its properties are described, as well as structural equations defining each of the Lie alge­bras. One of the reasons for considering these low dimensional Lie alge­bras that they often occur as subalgebras of large Lie algebras


2002 ◽  
Author(s):  
Θεόδουλος Ταπανίδης

In this paper we study special properties of Nilpotent Lie Algebras of dimension eight over the field K of characteristic zero. The complete classification of these Lie Algebras has been done recently and there exist a great number of open problems. The problems, which have been solved in the thesis, are the following: i. There is not an Algebra of this category, which has two maximum abellian ideals of different dimension. ii. Extension of a Nilpotent Lie Algebra to others of bigger dimension. iii. Determination of Nilpotent Lie Algebras from another category iv. Determination of characteristic Nilpotent Lie Algebras from this category of Nilpotent Lie Algebras of dimensions eight. This thesis has three chapters. Each of them is analyzed as follows. The first chapter contains basic elements of the theory of Nilpotent Lie Algebras. This has eleven paragraphs; each of them consists of the following. The first paragraph has a general theory of algebra. Basic elements about Lie Algebras are given in the second paragraph. The structure constants of a Lie algebra are also given in this paragraph and also some relations between them. Finally it contains the determination of a Lie Algebra by constant structure and conversely. The third paragraph includes mappings between Lie Algebras. The notions of homomorphic and isomorphic Lie Algebras are defined by these mappings. The definitions of subalgebras and ideals of Lie Algebras are given in the fourth paragraph. It also contains some of their properties. Finally it has the notion of quotient Lie Algebra. The derivations of a Lie Algebra are contain in the fifth paragraph. It also contains some of their properties. The sixth paragraph includes some basic subsets of Lie Algebra. These basic sets play an important role in the theory of Lie Algebras. From a Lie Algebra g we can form sequences of ideals of g. Two basic ideals are the central sequence and the derived sequence. These are in the seventh paragraph. The eighth paragraph contains some elements of solvable Lie Algebras. Some elements of Nilpotent Lie Algebras are included in the ninth paragraph. The tenth paragraph contains basic elements of simple and semi-simple Lie Algebras. Finally the problem of classification of Lie Algebras is included in the last paragraph. The purpose of the second chapter is to study some properties of Nilpotent Lie Algebras of dimension eight. The whole chapter contains three paragraphs; each of them is analyzed as follows. The first paragraph describes the maximum abelian ideals of a Nilpotent Lie Algebra. The Nilpotent Lie Algebras of dimension eight are studied in the second paragraph. It is given their separation in categories according to the number of parameters, which have the none zero Lie brackets. Special categories of Nilpotent Lie Algebras of dimension eight are determined in the third paragraph. Furthermore some basic problems are studied for which we have some solutions. One of them is to determine a Nilpotent Lie Algebra of dimension eight which has two maximum abelian ideals of different dimension. The answer to this problem is negative, that mean there exists no such Lie Algebra of dimension eight, which has two maximum abelian ideals of different dimension. In this paragraph is also given the theory of extension of a Nilpotent Lie Algebra of bigger dimensions. The third chapter contains the study of Nilpotent Lie Algebras of dimension eight which are characteristically Nilpotent for all the parameters. Another category of Nilpotent Lie Algebras is determined which is characteristically Nilpotent for special values of parameters. The chapter has two paragraphs. The first paragraph gives special elements for characteristically Nilpotent Lie Algebras, which are necessary for the next paragraph. In the second paragraph we determine the category of Nilpotent Lie Algebras of dimension eight which are characteristically Nilpotent. We also determine other such Nilpotent Lie Algebras of dimension eight for special values of the parameters.


2007 ◽  
Vol 17 (03) ◽  
pp. 527-555 ◽  
Author(s):  
YOU'AN CAO ◽  
DEZHI JIANG ◽  
JUNYING WANG

Let L be a finite-dimensional complex simple Lie algebra, Lℤ be the ℤ-span of a Chevalley basis of L and LR = R⊗ℤLℤ be a Chevalley algebra of type L over a commutative ring R. Let [Formula: see text] be the nilpotent subalgebra of LR spanned by the root vectors associated with positive roots. The aim of this paper is to determine the automorphism group of [Formula: see text].


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mehdi Jamshidi ◽  
Farshid Saeedi ◽  
Hamid Darabi

PurposeThe purpose of this paper is to determine the structure of nilpotent (n+6)-dimensional n-Lie algebras of class 2 when n≥4.Design/methodology/approachBy dividing a nilpotent (n+6)-dimensional n-Lie algebra of class 2 by a central element, the authors arrive to a nilpotent (n+5) dimensional n-Lie algebra of class 2. Given that the authors have the structure of nilpotent (n+5)-dimensional n-Lie algebras of class 2, the authors have access to the structure of the desired algebras.FindingsIn this paper, for each n≥4, the authors have found 24 nilpotent (n+6) dimensional n-Lie algebras of class 2. Of these, 15 are non-split algebras and the nine remaining algebras are written as direct additions of n-Lie algebras of low-dimension and abelian n-Lie algebras.Originality/valueThis classification of n-Lie algebras provides a complete understanding of these algebras that are used in algebraic studies.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1354 ◽  
Author(s):  
Hassan Almusawa ◽  
Ryad Ghanam ◽  
Gerard Thompson

In this investigation, we present symmetry algebras of the canonical geodesic equations of the indecomposable solvable Lie groups of dimension five, confined to algebras A 5 , 7 a b c to A 18 a . For each algebra, the related system of geodesics is provided. Moreover, a basis for the associated Lie algebra of the symmetry vector fields, as well as the corresponding nonzero brackets, are constructed and categorized.


2018 ◽  
Vol 18 (2) ◽  
pp. 237-263 ◽  
Author(s):  
Christian Autenried ◽  
Kenro Furutani ◽  
Irina Markina ◽  
Alexander Vasiľev

Abstract The metric approach to studying 2-step nilpotent Lie algebras by making use of non-degenerate scalar products is realised. We show that a 2-step nilpotent Lie algebra is isomorphic to its standard pseudo-metric form, that is a 2-step nilpotent Lie algebra endowed with some standard non-degenerate scalar product compatible with the Lie bracket. This choice of the standard pseudo-metric form allows us to study the isomorphism properties. If the elements of the centre of the standard pseudo-metric form constitute a Lie triple system of the pseudo-orthogonal Lie algebra, then the original 2-step nilpotent Lie algebra admits integer structure constants. Among particular applications we prove that pseudo H-type algebras have bases with rational structure constants, which implies that the corresponding pseudo H-type groups admit lattices.


Sign in / Sign up

Export Citation Format

Share Document