Organic/Inorganic Superabsorbent Hydrogels Based on Xylan and Montmorillonite
The unique organic/inorganic superabsorbent hydrogels based on xylan and inorganic clay montmorillonite (MMT) were prepared via grafting copolymerization of acrylic acid (AA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) withN,N-methylenebisacrylamide (MBA) as a cross-linking agent and potassium persulfate (KPS) as an initiator. The effect of variables on the swelling capacity of the hydrogels, such as the weight ratios of MMT/xylan, MBA/xylan, and AMPS/AA, was systematically optimized. The results indicated that the superabsorbent hydrogels comprised a porous cross-linking structure of MMT and xylan with side chains that carry carboxylate, carboxamide, and sulfate. The hydrogels exhibit the high compressive modulus (E), about 35–55 KPa, and the compression strength of the hydrogels increased with an increment of the MMT content. The effect of various cationic salt solutions (LiCl, CaCl2, and FeCl3) on the swelling has the following order: Li+> Ca2+> Fe3+. Furthermore, the influence of pH values on swelling behaviors showed that the superabsorbent composites retained around 1000 g g−1over a wide pH range of 6.0–10.0. The xylan-based hydrogels with the high mechanical and swelling properties are promising for the applications in the biomaterials area.