scholarly journals Krasnosel’skii Type Hybrid Fixed Point Theorems and Their Applications to Fractional Integral Equations

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
H. M. Srivastava ◽  
Sachin V. Bedre ◽  
S. M. Khairnar ◽  
B. S. Desale

Some hybrid fixed point theorems of Krasnosel’skii type, which involve product of two operators, are proved in partially ordered normed linear spaces. These hybrid fixed point theorems are then applied to fractional integral equations for proving the existence of solutions under certain monotonicity conditions blending with the existence of the upper or lower solution.

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Min Liang ◽  
Chuanxi Zhu ◽  
Zhaoqi Wu ◽  
Chunfang Chen

Some new coupled coincidence point and coupled fixed point theorems are established in partially ordered metric-like spaces, which generalize many results in corresponding literatures. An example is given to support our main results. As an application, we discuss the existence of the solutions for a class of nonlinear integral equations.


2018 ◽  
Vol 15 (01) ◽  
pp. 65-83
Author(s):  
Nabanita Konwar ◽  
Ayhan Esi ◽  
Pradip Debnath

Contraction mappings provide us with one of the major sources of fixed point theorems. In many mathematical models, the existence of a solution may often be described by the existence of a fixed point for a suitable map. Therefore, study of such mappings and fixed point results becomes well motivated in the setting of intuitionistic fuzzy normed linear spaces (IFNLSs) as well. In this paper, we define some new contraction mappings and establish fixed point theorems in a complete IFNLS. Our results unify and generalize several classical results existing in the literature.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 694 ◽  
Author(s):  
Alqahtani ◽  
Aydi ◽  
Karapınar ◽  
Rakočević

In this manuscript, we propose a solution for Volterra type fractional integral equations by using a hybrid type contraction that unifies both nonlinear and linear type inequalities in the context of metric spaces. Besides this main goal, we also aim to combine and merge several existing fixed point theorems that were formulated by linear and nonlinear contractions.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Chuanxi Zhu ◽  
Wenqing Xu ◽  
Zhaoqi Wu

We introduce the concepts of(H,ψ,Φ)-contraction and probabilistic(α,φ)-contraction mappings in generalized probabilistic metric spaces and prove some fixed point theorems for such two types of mappings in generalized probabilistic metric spaces. Our results generalize and extend many comparable results in existing literature. Some examples are also given to support our results. Finally, an application to the existence of solutions for a class of integral equations is presented by utilizing one of our main results.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
L. Gholizadeh ◽  
R. Saadati ◽  
W. Shatanawi ◽  
S. M. Vaezpour

We consider the concept of -distance on a complete, partially ordered -metric space and prove some fixed point theorems. Then, we present some applications in integral equations of our obtained results.


2018 ◽  
Vol 38 (1) ◽  
pp. 131-149
Author(s):  
José R. Morales ◽  
Edixon M. Rojas ◽  
Ravindra K. Bisht

The aim of the present paper is to introduce a new class of pair of contraction mappings, called ψ − (α, β, m)-contraction pairs, and obtain common fixed point theorems for a pair of mappings in this class, satisfying a minimal commutativity condition. Afterwards, we will use mappings in this class to analyze the existence of solutions for a class of nonlinear integral equations on the space of con- tinuous functions and in some of its subspaces. Concrete examples are also provided in order to illustrate the applicability of the results.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Hemant Kumar Nashine ◽  
Rabha W. Ibrahim ◽  
Ravi P. Agarwal ◽  
N. H. Can

AbstractIn this paper, we discuss fixed point theorems for a new χ-set contraction condition in partially ordered Banach spaces, whose positive cone $\mathbb{K}$ K is normal, and then proceed to prove some coupled fixed point theorems in partially ordered Banach spaces. We relax the conditions of a proper domain of an underlying operator for partially ordered Banach spaces. Furthermore, we discuss an application to the existence of a local fractional integral equation.


Sign in / Sign up

Export Citation Format

Share Document