scholarly journals Development and Characterization of Polyphenon 60 and Caffeine Microemulsion for Enhanced Antibacterial Activity

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Sonal Gupta ◽  
Rakhi Bansal ◽  
Javed Ali ◽  
Reema Gabrani ◽  
Shweta Dang

Green tea catechins and caffeine have exhibited antibacterial activity; however, their use is limited by lack of stability and effective delivery systems. Polyphenon 60 (P60) and caffeine were encapsulated in a single microemulsion (ME) formulation with an objective to lower the minimum inhibitory concentrations (MICs) of the individual agents against selected pathogens (S. epidermidisandE. coli). Combination of two natural compounds would advocate two different mechanisms on the bacterial growth thereby providing for better antibacterial activity. Thermodynamically stable ME was developed and characterized with an average particle size of 17.58 nm, further confirmed by TEM analysis. Antibacterial studies included chequerboard microdilution assay to determine the MIC and fractional inhibitory concentration (FIC) of both the natural compounds individually and in combination. MIC and FIC results indicated that the combination of the above two natural compounds was proficient in lowering the MICs of individual agents. Results of DPPH assay indicated that ME system preserved the long term antioxidative potential of P60 and caffeine. The cytotoxicity of the optimized formulation on Vero cell line by MTT assay was found to be nontoxic to mammalian cells.

2021 ◽  
Vol 37 (2) ◽  
pp. 405-412
Author(s):  
Mohamed Habib Oueslati ◽  
Lotfi Ben Tahar ◽  
A. Khuzaim Alzahrani ◽  
Jamith Basha ◽  
Omar H. Abd Elkader

The present work reports a green biosynthesis of gold nano particles (EO-AuNPs) using an essential oil (EO) as a reducing agent of the Au(III) in HAuCl4. The EO was extracted by hydro-distillation from Diplotaxis acris flowers. A total of 16 compounds were detected from the EO oil by using GC–MS and 5-methylsulfanylpentanenitrile was identified as the major component (73.60 %). The biosynthesized EO-AuNPs were characterized performing UV–Vis, IR,XRD and TEM analyses.The UV-Vis revealed the typical features of surface plasmon resonance (SPR) of AuNPs at ~526 nm. The FT-IR spectrum of the biosynthesized nano particles exhibited the features of the nitrile (-C≡N) functional group indicating that the -C≡N-bearing EO components are likely acting as reducing and stabilizing agents for the formation of EO-AuNPs. The plausible scheme of EO-AuNPsformation was proposed.The TEM analysis showed that the EO- AuNPs were almost spherical in shape with an average particle size of 12.7 nm. In addition, the antimicrobial activity was carried out by diffusion of agar wells method. The results proved that the EO-AuNPs displayed a potential antimicrobial against gram negative strains, with a maximum zone of inhibition of 16 mm for E. coli at a concentration of 100 µg / ml.


2012 ◽  
Vol 622-623 ◽  
pp. 851-854 ◽  
Author(s):  
Masoumeh Tabatabaee ◽  
Paria Baziari ◽  
Navid Nasirizadeh ◽  
Hamed Dehghanizadeh

Nano-sized cadmium sulfid (CdS) was synthesized successfully by a simple method using ultrasonic irradiation in the presence of polyethylene glycol (PEG 2000). X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to characterize the structure and morphology synthesized powder. The nanocrystaline of β-CdS was grown in face-centered cubic. The average particle size of synthesized CdS is ~25 nm. CdS suspensions have then been impregnated on cotton-based textile samples and the antibacterial activity of so-functionalized textiles has been studied with respect to E. coli. Results shows that CdS nanoparticles exhibit a strong antibacterial activity and can inhibit 97% of growth E. coli bacteria.


2019 ◽  
Vol 4 (3) ◽  
pp. 172
Author(s):  
Verry Andre Fabiani ◽  
Megawati Ayu Putri ◽  
Marhan Ebit Saputra ◽  
Della Puspita Indriyani

<p>Synthesis nanosilver from <em>pelawan</em> leaf extract <em>(Tristaniopsis merguensis)</em> has been carried out. The variables of this study were variations in the concentration of AgNO<sub>3</sub> 1 mM, 1.5 mM and 2 mM. Pelawan leaf extract acted as a bioreductor that converts Ag<sup>+</sup> to Ag<sup>0</sup>. The synthesis was carried out in a ratio of 1: 4 (opposition leaf extract: AgNO<sub>3</sub> solution) at 70 °C for 1.5 hours. The results of the UV-Vis analysis showed the maximum at the 1 mM; 1.5 mM; 2 mM AgNO<sub>3 </sub>concentration were 391 nm, 392 nm and 400 nm, respectively. XRD analysis explained that the resulting nanosilver was crystalline and according the Scherrer equation an average particle size was of 22.8 nm. The antibacterial activity test of nanosilver was carried out by disc method, nanosilver showed the existence of strong antibacterial activity against <em>E. coli</em> and <em>S. aureus</em> bacteria.</p><p>.</p>


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 808
Author(s):  
Ahmed Al Saqr ◽  
El-Sayed Khafagy ◽  
Ahmed Alalaiwe ◽  
Mohammed F. Aldawsari ◽  
Saad M. Alshahrani ◽  
...  

Green synthesis of gold nanoparticles (GNPs) with plant extracts has gained considerable interest in the field of biomedicine. Recently, the bioreduction nature of herbal extracts has helped to synthesize spherical GNPs of different potential from gold salt. In this study, a fast ecofriendly method was adopted for the synthesis of GNPs using fresh peel (aqueous) extracts of Benincasa hispida, which acted as reducing and stabilizing agents. The biosynthesized GNPs were characterized by UV–VIS and Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering. In addition, the in vitro antibacterial and anticancer activities of synthesized GNPs were investigated. The formation of gold nanoparticles was confirmed by the existence of a sharp absorption peak at 520 nm, corresponding to the surface plasmon resonance (SPR) band of the GNPs. TEM analysis revealed that the prepared GNPs were spherical in shape and had an average particle size of 22.18 ± 2 nm. Most importantly, the synthesized GNPs exhibited considerable antibacterial activity against different Gram-positive and Gram-negative bacteria. Furthermore, the biosynthesized GNPs exerted remarkable in vitro cytotoxicity against human cervical cancer cell line, while sparing normal human primary osteoblast cells. Such cytotoxic effect was attributed to the increased production of reactive oxygen species (ROS) that contributed to the damage of HeLa cells. Collectively, peel extracts of B. hispida can be efficiently used for the synthesis of GNPs, which can be adopted as a natural source of antimicrobial and anticancer agent.


NANO ◽  
2020 ◽  
Vol 15 (04) ◽  
pp. 2050054 ◽  
Author(s):  
Xin Li ◽  
Haoqi Zhao ◽  
Shidong Wang ◽  
Weiwu Zou ◽  
Peiyan Yang ◽  
...  

Graphene oxide (GO), a 2D nanomaterial, is a promising material for medical application, thanks to its water solubility, antibacterial activity and relatively low cytotoxicity. However, many factors, such as lateral dimension, purity and surface chemistry, may influence its antibacterial activity, its exact mechanism is still unknown. In this work, E. coli was used as model bacterium to determine the antibacterial activity of well-dispersed GO which was obtained by a modified Hummer method and dialyzed to remove the salts and acid used in the oxidation process. After co-culture with GO for 2[Formula: see text]h, up to 90% E. coli cells were inactivated when GO concentration at 8[Formula: see text][Formula: see text]g/mL. The direct interaction was not detected in FE-SEM images and the results of [Formula: see text] potential showed that the interaction between GO and E. coli are repulsive[Formula: see text] Our results showed that GO can produce ROS and inactivate SOD and CAT enzymes in low concentration after co-cultured with E. coli which explained the antibacterial activity of GO in aqueous solution. Meanwhile, GO, with high purity, showed low cytotoxicity towards mammalian cells and did not cause any observable hemoglobin after co-cultured with blood cells. The data presented here prove that GO is effectively inhibit E. coli through inactivating SOD, CAT enzymes and the oxidative stress produced by ROS. Furthermore, the good biocompatibility promised its future application.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Nguyen Lam Uyen Vo ◽  
Thi Thuy Van Nguyen ◽  
Tri Nguyen ◽  
Phung Anh Nguyen ◽  
Van Minh Nguyen ◽  
...  

In this study, CuO-ZnO composite was synthesized via the sol-gel method using oxalic acid to form the medium complex and its applications in antibacterial have been conducted with B. cereus, E. coli, S. aureus, Salmonella, and P. aeruginosa. Then, nanopowder of CuO-ZnO was coated on shoe insoles and their antibacterial effect with S. aureus was tested. The nanocomposite products were characterized by XRD, XPS, SEM, TEM, and UV-Vis. The results showed that the CuO-ZnO composite has the average particle size in a range of 20-50 nm, the point of zero charge of 7.8, and the bandgap of 1.7 eV. XPS result shows the composite structure with Cu2+ in the product. The minimum inhibitory concentration (MIC) of CuO-ZnO nanocomposite was 0.313 mg·mL-1 for S. aureus and Samonella, 0.625 mg·mL-1 for E. coli, and 5 mg·mL-1 for B. cereus and P. aeruginosa. The shoe insoles coated with 0.35 wt.% of CuO-ZnO nanocomposite also had high antibacterial activity against S. aureus, and this antibacterial nanocomposite was implanted durably on the surface of the shoe insoles.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2951 ◽  
Author(s):  
Mohamed M.A. Soliman ◽  
Andreia F. Peixoto ◽  
Ana P.C. Ribeiro ◽  
Maximilian N. Kopylovich ◽  
Elisabete C.B.A. Alegria ◽  
...  

Pd(II) and Pt(II) composites with activated carbon (AC), graphene oxide, and multiwalled carbon nanotubes were prepared by ball milling and used as catalysts for the Suzuki-Miyaura reaction, under several energy inputs (mechanical grinding, conventional heating, and microwave irradiation). The catalytic composites were characterized by ICP-MS, BET, XPS analyses, TEM, and SEM. The average particle size of the prepared composites was estimated to be in the range of 6–30 nm, while the loadings of Pd and Pt did not significantly affect the surface area of the AC support due to the tendency to agglomerate as observed by the TEM analysis. The Pd/AC composites exhibit high mechanochemical catalytic activity in cross-coupling of bromobenzene and phenylboronic acid with molar yields up to 80% with TON and TOF of 222 and 444 h−1, respectively, achieved with Pd(4.7 wt%)-AC catalyst under the liquid assisted grinding for 0.5 h at ambient conditions, using cyclohexene as an additive.


2020 ◽  
Vol 12 (2) ◽  
pp. 163-167
Author(s):  
K. Kavitha ◽  
T. Subba Rao ◽  
R. Padma Suvarna ◽  
M. Prasanna Kumar

Currently, researches on nanocomposites become an active research area due its unique properties. Earlier, many researches are done for synthesizing the multidimensional structures for developing efficient and new Nano devices. In this present work, we synthesized ZnO–CuO nanocomposites using sol–gel method. The obtained nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) analysis and Compressive strength analysis using compressive testing machine (CTM). Herein, the structure and size of the ZnO–CuO nanocomposites were studied using XRD. And the average particle size was found to be 34 nm. The TEM analysis has the evidence of the XRD result. The enhancement in compressive strength of the ZnO–CuO nanocomposites was determined using CTM machine up to 4 wt.%.


2016 ◽  
Vol 18 (2) ◽  
pp. 131-139
Author(s):  
Kinga Łuczka ◽  
Barbara Grzmil ◽  
Bogumił Kic ◽  
Krzysztof Kowalczyk

Abstract Synthesis and characterization of the aluminum phosphates modified with ammonium, calcium and molybdenum were conducted. The influence of process parameters (reactive pressure and molar ratios) in the reaction mixture were studied. The contents of the individual components in the products were in the range of: 10.97–17.31 wt% Al, 2.65–13.32 wt% Ca, 0.70–3.11 wt% Mo, 4.36–8.38 wt% NH3, and 35.12–50.54 wt% P2O5. The materials obtained in the experiments were characterized by various physicochemical parameters. The absorption oil number was in the range from 67 to 89 of oil/100 g of product, the surface area was within the range of 4–76 m2/g, whereas the average particle size of products reached 282–370 nm. The Tafel tests revealed comparable anticorrosive properties of aluminum phosphates modified with ammonium, calcium, molybdenum in comparison with commercial phosphate.


2018 ◽  
Vol 7 (1) ◽  
pp. 1
Author(s):  
Abrianto A. O. Rompis ◽  
Fitje Losung ◽  
Deiske A. Sumilat ◽  
Agung B. Windarto ◽  
Stenly Wullur ◽  
...  

The sponge is one of the sea organisms that has a prospect as a source of natural compounds including peptides, steroids, asetogenin, terpenoids, alkaloids, cyclic halide and nitrogen. This research was directed to obtain several species of sponges from the waters of Tasik Ria as well as testing the antibacterial activity of extracts from some of the sponge against the bacteria Escherichia coli and Staphylococcus aureus. From the identification, seven species of sponges were found, which consists of: Amphimedon sp., Axinosa sp., Aaptos sp., Theonella sp., Cribochalina sp., Hyrtios sp., and Lendenfeldia sp. The tests of antibacterial activity of the extracts from these sponges against test bacteria E. coli and S. aureus showed some positive results. Extract from Axinosa sp. sponge(16 mm) showed the strongest antibacterial activity on Escherichia coli bacteria. Followed by Hyrtios sp. extract (13.5 mm), Aaptos sp. extract (13 mm), Lendenfeldia sp. extract (13 mm) and Cribochalinai sp. extract(10.5 mm). While the the tests on Staphylococcus aureus bacteria showed that the strongest antibacterial activity was found from Axinosa sp. sponge extract (16.5 mm), followed by the extract from Aaptos sp. (15 mm), Lendenfeldia sp. extract (14.5 mm), Hyrtios sp. extract(13.5 mm) and Cribochalina sp. extract (11 mm).Keywords: Sponge, antibacterial, Escherichia coli, Staphylococcus aureus ABSTRAK Spons merupakan salah satu biota laut yang sangat prospektif sebagai sumber senyawa bahan-bahan alami antara lain peptide, terpenoid, steroid, asetogenin, alkaloid, halide siklik dan senyawa nitrogen. Penelitian ini diarahkan untuk mendapatkan beberapa spesies spons dari perairan Tasik Ria serta menguji aktivitas antibakteri dari beberapa ekstrak spons terhadap bakteri Escherichia coli dan bakteri Staphylococcus aureus. Hasil identifikasi spons ditemukan sebanyak tujuh spesies yang terdiri dari: Amphimedon sp., Axinosa sp., Aaptos sp., Theonella sp., Hyrtios sp., Cribochalina sp. dan Lendenfeldia sp.. Aktivitas antibakteri dari beberapa ekstrak spons terhadap bakteri uji E. coli dan S. aureus terdapat diameter zona hambat bervariasi yaitu bakteri Escherichia coli menunjukkan aktivitas antibakteri ekstrak spons terkuat pada spons Axinosa sp (16 mm), disusul ekstrak spons Hyrtios sp. (13,5 mm), ekstrak spons Aaptos sp. (13 mm), ekstrak spons Lendenfeldia sp. (13 mm) dan ekstrak spons Cribochalinai sp. (10,5 mm).  Sedangkan pada bakteri Staphylococcus aureus menunjukkan aktivitas antibakteri ekstrak spons terkuat yaitu:  ekstrak spons Axinosa sp. (16,5 mm), disusul ekstrak spons Aaptos sp. (15 mm), ekstrak spons Lendenfeldia sp. (14,5 mm), ekstrak spons Hyrtios sp. (13,5 mm) dan ekstrak spons Cribochalina sp.(11mm).Kata Kunci : Spons, Antibakteri, Escherichia coli, Staphylococcus aureus


Sign in / Sign up

Export Citation Format

Share Document