Visible Light Induced Photocatalytic Degradation of Methyl Red with Codoped Titania
Photocatalysis using semiconductor oxides was being investigated extensively for the degradation of dyes in effluent water. This paper reports our findings on visible light induced photocatalytic degradation of azo dye, methyl red mediated nitrogen and manganese codoped nano-titanium dioxide (N/Mn-TiO2). The codoped samples with varying weight percentages were synthesized by sol-gel method and characterized by various analytical techniques. The X-ray diffraction data showed that the synthesized samples were in anatase phase with 2θ at 25.3°. UV-visible diffuse reflectance spectral analysis revealed that the presence of dopants in TiO2 caused a significant absorption shift towards visible region and their presence was confirmed by X-ray photoelectron spectral data. The release of hydroxyl radical (major active species in photocatalytic degradation) by the photocatalyst in aqueous solution under visible light irradiation was quantitatively investigated by the photoluminiscent technique (PL). The effect of various experimental parameters like dopant concentration, pH, catalyst dosage, and initial dye concentrations was investigated and optimum conditions were established. The extent of mineralization of methyl red was studied by chemical oxygen demand (COD) assays and the results showed complete mineralization of the dye.