scholarly journals Forecasting Return Volatility of the CSI 300 Index Using the Stochastic Volatility Model with Continuous Volatility and Jumps

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xu Gong ◽  
Zhifang He ◽  
Pu Li ◽  
Ning Zhu

The logarithmic realized volatility is divided into the logarithmic continuous sample path variation and the logarithmic discontinuous jump variation on the basis of the SV-RV model in this paper, which constructs the stochastic volatility model with continuous volatility (SV-CJ model). Then, we use high-frequency transaction data for five minutes of the CSI 300 stock index as the study sample, which, respectively, make parameter estimation on the SV, SV-RV, and SV-CJ model. We also comparatively analyze these three models' prediction accuracy by using the loss functions and SPA test. The results indicate that the prior logarithmic realized volatility and the logarithmic continuous sample path variation can be used to predict the future return volatility in China's stock market, while the logarithmic discontinuous jump variation is poor at its prediction accuracy. Besides, the SV-CJ model has an obvious advantage over the SV and SV-RV model as to the prediction accuracy of the return volatility, and it is more suitable for the research concerning the problems of financial practice such as the financial risk management.

2006 ◽  
Vol 4 (2) ◽  
pp. 203
Author(s):  
Alan De Genaro Dario

Volatility swaps are contingent claims on future realized volatility. Variance swaps are similar instruments on future realized variance, the square of future realized volatility. Unlike a plain vanilla option, whose volatility exposure is contaminated by its asset price dependence, volatility and variance swaps provide a pure exposure to volatility alone. This article discusses the risk-neutral valuation of volatility and variance swaps based on the framework outlined in the Heston (1993) stochastic volatility model. Additionally, the Heston (1993) model is calibrated for foreign currency options traded at BMF and its parameters are used to price swaps on volatility and variance of the BRL / USD exchange rate.


2009 ◽  
Vol 18 (08) ◽  
pp. 1381-1396 ◽  
Author(s):  
TETSUYA TAKAISHI

The hybrid Monte Carlo (HMC) algorithm is applied for the Bayesian inference of the stochastic volatility (SV) model. We use the HMC algorithm for the Markov chain Monte Carlo updates of volatility variables of the SV model. First we compute parameters of the SV model by using the artificial financial data and compare the results from the HMC algorithm with those from the Metropolis algorithm. We find that the HMC algorithm decorrelates the volatility variables faster than the Metropolis algorithm. Second we make an empirical study for the time series of the Nikkei 225 stock index by the HMC algorithm. We find the similar correlation behavior for the sampled data to the results from the artificial financial data and obtain a ϕ value close to one (ϕ ≈ 0.977), which means that the time series has the strong persistency of the volatility shock.


2018 ◽  
Vol 7 (4) ◽  
pp. 317
Author(s):  
DESAK PUTU DEVI DAMIYANTI ◽  
KOMANG DHARMAWAN ◽  
LUH PUTU IDA HARINI

Value at risk is a method that measures financial risk of an security or portfolio. The aims of the research is to find out the value at risk of an exchange rate using the Heston stochastic volatility model. Heston model is a strochastic volatility model that assumes that volatility of the security follow stochastic process and consider the mean reversion. Based on simulation results, the value of volatility using Heston volatility estimastor is 0.2887, and the value of Heston VaR with 95 percent confident level is 0.0297. Based on result of backtesting,  there are 48 violations obtained VaR using Heston model, while historical VaR there are 2 violations. Thus, VaR using Heston model is more strict in estimating risk.


2014 ◽  
Vol 530-531 ◽  
pp. 605-608
Author(s):  
Xiao Cui Yin

This paper is to study the estimation of stochastic volatility model with leverage effect using Bayesian approach and Markov Chain Monte Carlo (MCMC) simulation technique. The data used is China's Shenzheng stock index. Estimations of model parameters are achieved by using MCMC technique in Openbugs Software, results show that there is leverage effect in Shenzheng stock series, convergence diagnostics suggest that parameters of the model are convergent.


Sign in / Sign up

Export Citation Format

Share Document