A Stochastic Volatility Model of Scale Mixtures Using Bayesian Analysis for Stock Index in China

Author(s):  
Special Issues Editor
2009 ◽  
Vol 18 (08) ◽  
pp. 1381-1396 ◽  
Author(s):  
TETSUYA TAKAISHI

The hybrid Monte Carlo (HMC) algorithm is applied for the Bayesian inference of the stochastic volatility (SV) model. We use the HMC algorithm for the Markov chain Monte Carlo updates of volatility variables of the SV model. First we compute parameters of the SV model by using the artificial financial data and compare the results from the HMC algorithm with those from the Metropolis algorithm. We find that the HMC algorithm decorrelates the volatility variables faster than the Metropolis algorithm. Second we make an empirical study for the time series of the Nikkei 225 stock index by the HMC algorithm. We find the similar correlation behavior for the sampled data to the results from the artificial financial data and obtain a ϕ value close to one (ϕ ≈ 0.977), which means that the time series has the strong persistency of the volatility shock.


2014 ◽  
Vol 530-531 ◽  
pp. 605-608
Author(s):  
Xiao Cui Yin

This paper is to study the estimation of stochastic volatility model with leverage effect using Bayesian approach and Markov Chain Monte Carlo (MCMC) simulation technique. The data used is China's Shenzheng stock index. Estimations of model parameters are achieved by using MCMC technique in Openbugs Software, results show that there is leverage effect in Shenzheng stock series, convergence diagnostics suggest that parameters of the model are convergent.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xu Gong ◽  
Zhifang He ◽  
Pu Li ◽  
Ning Zhu

The logarithmic realized volatility is divided into the logarithmic continuous sample path variation and the logarithmic discontinuous jump variation on the basis of the SV-RV model in this paper, which constructs the stochastic volatility model with continuous volatility (SV-CJ model). Then, we use high-frequency transaction data for five minutes of the CSI 300 stock index as the study sample, which, respectively, make parameter estimation on the SV, SV-RV, and SV-CJ model. We also comparatively analyze these three models' prediction accuracy by using the loss functions and SPA test. The results indicate that the prior logarithmic realized volatility and the logarithmic continuous sample path variation can be used to predict the future return volatility in China's stock market, while the logarithmic discontinuous jump variation is poor at its prediction accuracy. Besides, the SV-CJ model has an obvious advantage over the SV and SV-RV model as to the prediction accuracy of the return volatility, and it is more suitable for the research concerning the problems of financial practice such as the financial risk management.


2016 ◽  
Vol 35 (5) ◽  
pp. 462-476 ◽  
Author(s):  
Tony S. Wirjanto ◽  
Adam W. Kolkiewicz ◽  
Zhongxian Men

Sign in / Sign up

Export Citation Format

Share Document