scholarly journals Stability of Real Parametric Polynomial Discrete Dynamical Systems

2015 ◽  
Vol 2015 ◽  
pp. 1-13
Author(s):  
Fermin Franco-Medrano ◽  
Francisco J. Solis

We extend and improve the existing characterization of the dynamics of general quadratic real polynomial maps with coefficients that depend on a single parameterλand generalize this characterization to cubic real polynomial maps, in a consistent theory that is further generalized to realmth degree real polynomial maps. In essence, we give conditions for the stability of the fixed points of any real polynomial map with real fixed points. In order to do this, we have introduced the concept ofcanonical polynomial mapswhich are topologically conjugate to any polynomial map of the same degree with real fixed points. The stability of the fixed points of canonical polynomial maps has been found to depend solely on a special function termedProduct Position Functionfor a given fixed point. The values of this product position determine the stability of the fixed point in question, when it bifurcates and even when chaos arises, as it passes through what we have termedstability bands. The exact boundary values of these stability bands are yet to be calculated for regions of type greater than one for polynomials of degree higher than three.

2016 ◽  
Vol 118 (1) ◽  
pp. 57 ◽  
Author(s):  
Raimundo N. Araújo Dos Santos ◽  
Ying Chen ◽  
Mihai Tibăr

We provide significant conditions under which we prove the existence of stable open book structures at infinity, i.e. on spheres $S^{m-1}_R$ of large enough radius $R$. We obtain new classes of real polynomial maps $\mathsf{R}^m \to \mathsf{R}^p$ which induce such structures.


10.37236/6898 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Sen-Peng Eu ◽  
Tung-Shan Fu ◽  
Hsiang-Chun Hsu ◽  
Yu-Pei Huang

For a partition $\lambda$ of an integer, we associate $\lambda$ with a slender poset $P$ the Hasse diagram of which resembles the Ferrers diagram of $\lambda$. Let $X$ be the set of maximal chains of $P$. We consider Stanley's involution $\epsilon:X\rightarrow X$, which is extended from Schützenberger's evacuation on linear extensions of a finite poset. We present an explicit characterization of the fixed points of the map $\epsilon:X\rightarrow X$ when $\lambda$ is a stretched staircase or a rectangular shape. Unexpectedly, the fixed points have a nice structure, i.e., a fixed point can be decomposed in half into two chains such that the first half and the second half are the evacuation of each other. As a consequence, we prove anew Stembridge's $q=-1$ phenomenon for the maximal chains of $P$ under the involution $\epsilon$ for the restricted shapes.


1990 ◽  
Vol 10 (2) ◽  
pp. 209-229 ◽  
Author(s):  
Dov Aharonov ◽  
Uri Elias

AbstractThe stability of a fixed point of an area-preserving transformation in the plane is characterized by the invariant curves which surround it. The existence of invariant curves had been extensively studied for elliptic fixed points. Here we study the similar problem for parabolic fixed points. In particular we are interested in the case where the fixed point is at infinity.


2021 ◽  
pp. 32-37
Author(s):  
Andrei A. Burdakin ◽  
Valerii R. Gavrilov ◽  
Ekaterina A. Us ◽  
Vitalii S. Bormashov

The problem of ensuring stability of Earth observation space-borne instruments undertaking long-term temperature measurements within thermal IR spectral range is described. For in-flight reliable control of the space-borne IR instruments characteristics the stability of onboard reference sources should be improved. The function of these high-stable sources will be executed by novel onboard blackbodies, incorporating the melt↔freeze phase transition phenomenon, currently being developed. As a part of these works the task of realizing an on-orbit calibration scale within the dynamic temperature range of Earth observation systems 210−350 K based on fixed-point phase transition temperatures of a number of potentially suitable substances is advanced. The corresponding series of the onboard reference blackbodies will be set up on the basis of the on-orbit calibration scale fixed points. It is shown that the achievement of the target lies in carrying out a number of in-flight experiments with the selected fixed points and the prospective onboard fixed-point blackbodies prototypes. The new In-Bi eutectic alloy melt temperature fixed point (~345 K) is proposed as the significant fixed points of the future on-orbit calibration scale. The results of the new fixed point preliminary laboratory studies have been analyzed. The results allowed to start preparation of the in-flight experiments investigating the In-Bi alloy for the purpose of its application in the novel onboard reference sources.


Author(s):  
Sebastian van Strien

This chapter discusses Milnor's conjecture on monotonicity of entropy and gives a short exposition of the ideas used in its proof. It discusses the history of this conjecture, gives an outline of the proof in the general case, and describes the state of the art in the subject. The proof makes use of an important result by Kozlovski, Shen, and van Strien on the density of hyperbolicity in the space of real polynomial maps, which is a far-reaching generalization of the Thurston Rigidity Theorem. (In the quadratic case, density of hyperbolicity had been proved in studies done by M. Lyubich and J. Graczyk and G. Swiatek.) The chapter concludes with a list of open problems.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Parin Chaipunya ◽  
Chirasak Mongkolkeha ◽  
Wutiphol Sintunavarat ◽  
Poom Kumam

We give some initial properties of a subset of modular metric spaces and introduce some fixed-point theorems for multivalued mappings under the setting of contraction type. An appropriate example is as well provided. The stability of fixed points in our main theorems is also studied.


2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Choonkil Park

Using fixed point method, we prove the generalized Hyers-Ulam stability of the following additive-quadratic-cubic-quartic functional equationf(x+2y)+f(x−2y)=4f(x+y)+4f(x−y)−6f(x)+f(2y)+f(−2y)−4f(y)−4f(−y)in non-Archimedean Banach spaces.


Filomat ◽  
2015 ◽  
Vol 29 (5) ◽  
pp. 1067-1080
Author(s):  
Zhihua Wang ◽  
Prasanna Sahoo

Using the fixed point method, we prove some results concerning the stability of the functional equation 2n?i=1 f(xi-1/2n 2n?j=1 xj)=2n?i=1 f (xi)-2nf(1/2n 2n?i=1 xi) where f is defined on a vector space and taking values in a fuzzy Banach space, which is said to be a functional equation related to a characterization of inner product spaces.


1998 ◽  
Vol 44 (1) ◽  
pp. 175-182 ◽  
Author(s):  
Adam Parusiński ◽  
Zbigniew Szafraniec

Sign in / Sign up

Export Citation Format

Share Document