scholarly journals Nonlinear fuzzy stability of a functional equation related to a characterization of inner product spaces via fixed point technique

Filomat ◽  
2015 ◽  
Vol 29 (5) ◽  
pp. 1067-1080
Author(s):  
Zhihua Wang ◽  
Prasanna Sahoo

Using the fixed point method, we prove some results concerning the stability of the functional equation 2n?i=1 f(xi-1/2n 2n?j=1 xj)=2n?i=1 f (xi)-2nf(1/2n 2n?i=1 xi) where f is defined on a vector space and taking values in a fuzzy Banach space, which is said to be a functional equation related to a characterization of inner product spaces.

2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
M. Eshaghi Gordji ◽  
H. Khodaei

Th. M. Rassias (1984) proved that the norm defined over a real vector space is induced by an inner product if and only if for a fixed integer holds for all The aim of this paper is to extend the applications of the fixed point alternative method to provide a fuzzy stability for the functional equation which is said to be a functional equation associated with inner product spaces.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Anna Bahyrycz ◽  
Janusz Brzdęk ◽  
Magdalena Piszczek ◽  
Justyna Sikorska

We prove some stability and hyperstability results for the well-known Fréchet equation stemming from one of the characterizations of the inner product spaces. As the main tool, we use a fixed point theorem for the function spaces. We finish the paper with some new inequalities characterizing the inner product spaces.


Author(s):  
Renata Malejki

AbstractWe prove some stability and hyperstability results for a generalization of the well known Fréchet functional equation, stemming from one of the characterizations of the inner product spaces. As the main tool we use a fixed point theorem for some function spaces. We end the paper with some new inequalities characterizing the inner product spaces.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jae-Hyeong Bae ◽  
Batool Noori ◽  
M. B. Moghimi ◽  
Abbas Najati

AbstractIn this paper, we introduce the functional equations $$\begin{aligned} f(2x-y)+f(x+2y)&=5\bigl[f(x)+f(y)\bigr], \\ f(2x-y)+f(x+2y)&=5f(x)+4f(y)+f(-y), \\ f(2x-y)+f(x+2y)&=5f(x)+f(2y)+f(-y), \\ f(2x-y)+f(x+2y)&=4\bigl[f(x)+f(y)\bigr]+\bigl[f(-x)+f(-y)\bigr]. \end{aligned}$$ f ( 2 x − y ) + f ( x + 2 y ) = 5 [ f ( x ) + f ( y ) ] , f ( 2 x − y ) + f ( x + 2 y ) = 5 f ( x ) + 4 f ( y ) + f ( − y ) , f ( 2 x − y ) + f ( x + 2 y ) = 5 f ( x ) + f ( 2 y ) + f ( − y ) , f ( 2 x − y ) + f ( x + 2 y ) = 4 [ f ( x ) + f ( y ) ] + [ f ( − x ) + f ( − y ) ] . We show that these functional equations are quadratic and apply them to characterization of inner product spaces. We also investigate the stability problem on restricted domains. These results are applied to study the asymptotic behaviors of these quadratic functions in complete β-normed spaces.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 490
Author(s):  
Sang Og Kim

We investigate the Hyers–Ulam stability of the well-known Fréchet functional equation that comes from a characterization of inner product spaces. We also show its hyperstability on a restricted domain. We work in the framework of quasi-Banach spaces. In the proof, a fixed point theorem due to Dung and Hang, which is an extension of a fixed point theorem in Banach spaces, plays a main role.


2018 ◽  
Vol 51 (1) ◽  
pp. 295-303
Author(s):  
Gwang Hui Kim ◽  
Iz-iddine El-Fassi ◽  
Choonkil Park

AbstractWe have proved theHyers-Ulam stability and the hyperstability of the quadratic functional equation f (x + y + z) + f (x + y − z) + f (x − y + z) + f (−x + y + z) = 4[f (x) + f (y) + f (z)] in the class of functions from an abelian group G into a Banach space.


Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4933-4944
Author(s):  
Dongseung Kang ◽  
Heejeong Koh

We obtain a general solution of the sextic functional equation f (ax+by)+ f (ax-by)+ f (bx+ay)+ f (bx-ay) = (ab)2(a2 + b2)[f(x+y)+f(x-y)] + 2(a2-b2)(a4-b4)[f(x)+f(y)] and investigate the stability of sextic Lie *-derivations associated with the given functional equation via fixed point method. Also, we present a counterexample for a single case.


Sign in / Sign up

Export Citation Format

Share Document