maximal chains
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 1)

Author(s):  
Marina M. Sorokina ◽  
◽  
Seraphim P. Maksakov ◽  

Only finite groups are considered in the article. Among the classes of groups the central place is occupied by classes closed regarding homomorphic images and subdirect products which are called formations. We study Ω-foliateded formations constructed by V. A. Vedernikov in 1999 where Ω is a nonempty subclass of the class I of all simple groups. Ω-Foliated formations are defined by two functions — an Ω-satellite f : Ω ∪ {Ω 0} → {formations} and a direction ϕ : I → {nonempty Fitting formations}. The conception of multiple locality introduced by A. N. Skiba in 1987 for formations and further developed for many other classes of groups, as applied to Ω-foliated formations is as follows: every formation is considered to be 0-multiple Ω-foliated with a direction ϕ; an Ω-foliated formation with a direction ϕ is called an n-multiple Ω-foliated formation where n is a positive integer if it has such an Ω-satellite all nonempty values of which are (n − 1)-multiple Ω-foliated formations with the direction ϕ. The aim of this work is to study the properties of maximal n-multiple Ω-foliated subformations of a given n-multiple Ω-foliated formation. We use classical methods of the theory of groups, of the theory of classes of groups, as well as methods of the general theory of lattices. In the paper we have established the existence of maximal n-multiple Ω-foliated subformations for the formations with certain properties, we have obtained the characterization of the formation ΦnΩϕ (F) which is the intersection of all maximal n-multiple Ω-foliated subformations of the formation F, and we have revealed the relation between a maximal inner Ω-satellite of 1-multiple Ω-foliated formation and a maximal inner Ω-satellite of its maximal 1-multiple Ω-foliated subformation. The results will be useful in studying the inner structure of formations of finite groups, in particular, in studying the maximal chains of subformations and in establishing the lattice properties of formations.


2020 ◽  
Vol 23 (3) ◽  
pp. 399-414 ◽  
Author(s):  
Shawn T. Burkett

AbstractThe Jordan–Hölder theorem is a general term given to a collection of theorems about maximal chains in suitably nice lattices. For example, the well-known Jordan–Hölder type theorem for chief series of finite groups has been rather useful in studying the structure of finite groups. In this paper, we present a Jordan–Hölder type theorem for supercharacter theories of finite groups, which generalizes the one for chief series of finite groups.


Order ◽  
2019 ◽  
Vol 37 (2) ◽  
pp. 299-309
Author(s):  
Seyed Hadi Afzali Borujeni ◽  
Nathan Bowler
Keyword(s):  

2019 ◽  
Vol 81 ◽  
pp. 178-194
Author(s):  
Benjamin Braun ◽  
Wesley K. Hough
Keyword(s):  

10.37236/6898 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Sen-Peng Eu ◽  
Tung-Shan Fu ◽  
Hsiang-Chun Hsu ◽  
Yu-Pei Huang

For a partition $\lambda$ of an integer, we associate $\lambda$ with a slender poset $P$ the Hasse diagram of which resembles the Ferrers diagram of $\lambda$. Let $X$ be the set of maximal chains of $P$. We consider Stanley's involution $\epsilon:X\rightarrow X$, which is extended from Schützenberger's evacuation on linear extensions of a finite poset. We present an explicit characterization of the fixed points of the map $\epsilon:X\rightarrow X$ when $\lambda$ is a stretched staircase or a rectangular shape. Unexpectedly, the fixed points have a nice structure, i.e., a fixed point can be decomposed in half into two chains such that the first half and the second half are the evacuation of each other. As a consequence, we prove anew Stembridge's $q=-1$ phenomenon for the maximal chains of $P$ under the involution $\epsilon$ for the restricted shapes.


Sign in / Sign up

Export Citation Format

Share Document