scholarly journals The Pre-Schwarzian Norm Estimate for Analytic Concave Functions

Author(s):  
Young Jae Sim ◽  
Oh Sang Kwon

LetDdenote the open unit disk and letSdenote the class of normalized univalent functions which are analytic inD. LetCo(α)be the class of concave functionsf∈S, which have the condition that the opening angle off(D)at infinity is less than or equal toπα,α∈(1,2]. In this paper, we find a sufficient condition for the Gaussian hypergeometric functions to be in the classCo(α). And we define a classCo(α,A,B),(-1≤B<A≤1), which is a subclass ofCo(α)and we find the set of variabilities for the functional(1-|z|2)(f″(z)/f′(z))forf∈Co(α,A,B). This gives sharp upper and lower estimates for the pre-Schwarzian norm of functions inCo(α,A,B). We also give a characterization for functions inCo(α,A,B)in terms of Hadamard product.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Serap Bulut

We introduce and investigate a new general subclass ℋΣλ,μ(φ;Θ) of analytic and bi-univalent functions in the open unit disk U. For functions belonging to this class, we obtain estimates on the first two Taylor-Maclaurin coefficients |a2| and |a3|.


2009 ◽  
Vol 2009 ◽  
pp. 1-15
Author(s):  
H. Silverman ◽  
Thomas Rosy ◽  
S. Kavitha

The authors define a new subclass of of functions involving complex order in the open unit disk . For this new class, we obtain certain inclusion properties involving the Gaussian hypergeometric functions.


2021 ◽  
Vol 39 (2) ◽  
pp. 87-104
Author(s):  
Ebrahim Analouei Adegani ◽  
Ahmad Zireh ◽  
Mostafa Jafari

In this work, we introduce a new subclas of bi-univalent functions which is defined by Hadamard product andsubordination in the open unit disk. and find upper bounds for the second and third coefficients for functions in this new subclass. Further, we generalize and improve some of the previously published results.


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Janusz Sokół ◽  
Rabha W. Ibrahim ◽  
M. Z. Ahmad ◽  
Hiba F. Al-Janaby

AbstractLet SH be the class of functions f = h+g that are harmonic univalent and sense-preserving in the open unit disk U = { z : |z| < 1} for which f (0) = f'(0)-1=0. In this paper, we introduce and study a subclass H( α, β) of the class SH and the subclass NH( α, β) with negative coefficients. We obtain basic results involving sufficient coefficient conditions for a function in the subclass H( α, β) and we show that these conditions are also necessary for negative coefficients, distortion bounds, extreme points, convolution and convex combinations. In this paper an attempt has also been made to discuss some results that uncover some of the connections of hypergeometric functions with a subclass of harmonic univalent functions.


2021 ◽  
pp. 2000-2008
Author(s):  
Aqeel Ketab Al-khafaji

In this paper, a differential operator is used to generate a subclass of analytic and univalent functions with positive coefficients. The studied class of the functions includes:     which is defined in the open unit disk  satisfying the following condition This leads to the study of properties such as coefficient bounds, Hadamard product, radius of close –to- convexity, inclusive properties, and (n, τ) –neighborhoods for functions belonging to our class.


2020 ◽  
pp. 1136-1145
Author(s):  
Sattar Kamil Hussein ◽  
Kassim Abdulhameed Jassim

The main objective of" this paper is to study a subclass of holomrphic and univalent functions with negative coefficients in the open unit disk U= defined by Hadamard Product. We obtain coefficients estimates, distortion theorem , fractional derivatives, fractional integrals, and some results.


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Hari Mohan Srivastava ◽  
Ahmad Motamednezhad ◽  
Safa Salehian

In this paper, we introduce a new comprehensive subclass ΣB(λ,μ,β) of meromorphic bi-univalent functions in the open unit disk U. We also find the upper bounds for the initial Taylor-Maclaurin coefficients |b0|, |b1| and |b2| for functions in this comprehensive subclass. Moreover, we obtain estimates for the general coefficients |bn|(n≧1) for functions in the subclass ΣB(λ,μ,β) by making use of the Faber polynomial expansion method. The results presented in this paper would generalize and improve several recent works on the subject.


1997 ◽  
Vol 10 (2) ◽  
pp. 197-202
Author(s):  
Massoud Jahangiri

We consider the partial sums of certain hypergeometric functions and establish conditions imposed on the locations of zeros of those polynomials in order to be close-to-convex in the open unit disk.


2019 ◽  
Vol 12 (02) ◽  
pp. 1950017
Author(s):  
H. Orhan ◽  
N. Magesh ◽  
V. K. Balaji

In this work, we obtain an upper bound estimate for the second Hankel determinant of a subclass [Formula: see text] of analytic bi-univalent function class [Formula: see text] which is associated with Chebyshev polynomials in the open unit disk.


Author(s):  
Ismaila O. Ibrahim ◽  
Timilehin G. Shaba ◽  
Amol B. Patil

In the present investigation, we introduce the subclasses $\Lambda_{\Sigma_m}^{\rightthreetimes}(\sigma,\phi,\upsilon)$ and $\Lambda_{\Sigma_m}^{\rightthreetimes}(\sigma,\gamma,\upsilon)$ of $m$-fold symmetric bi-univalent function class $\Sigma_m$, which are associated with the Sakaguchi type of functions and defined in the open unit disk. Further, we obtain estimates on the initial coefficients $b_{m+1}$ and $b_{2m+1}$ for the functions of these subclasses and find out connections with some of the familiar classes.


Sign in / Sign up

Export Citation Format

Share Document