scholarly journals Change Point Determination for an Attribute Process Using an Artificial Neural Network-Based Approach

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yuehjen E. Shao ◽  
Ke-Shan Lin

The change point identification has played a vital role in process improvement for an attribute process. This identification is able to effectively help process personnel to quickly determine the corresponding root causes and significantly improve the underlying process. Although many studies have focused on identifying the change point of a process, a generic identification approach has not been developed. The typical maximum likelihood estimator (MLE) approach has limitations: particularly, the known prior process distribution and mathematical difficulties. These deficiencies are commonly encountered in practice. Accordingly, this study proposes an artificial neural network (ANN) mechanism to overcome the difficulties of typical MLE approach in determining the change point of an attribute process. Specifically, the performance among the statistical process control (SPC) chart alone, the typical MLE approach, and the proposed ANN mechanism are investigated for the following cases: (1) a known attribute process distribution with the associated MLE being available to be used, (2) an unknown attribute process distribution with the MLE being unable to be used, and (3) an unknown attribute process distribution with the MLE being misused. The superior results and the performance of the proposed approach are reported and discussed.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yuehjen E. Shao

Because of the excellent performance on monitoring and controlling an autocorrelated process, the integration of statistical process control (SPC) and engineering process control (EPC) has drawn considerable attention in recent years. Both theoretical and empirical findings have suggested that the integration of SPC and EPC can be an effective way to improve the quality of a process, especially when the underlying process is autocorrelated. However, because EPC compensates for the effects of underlying disturbances, the disturbance patterns are embedded and hard to be recognized. Effective recognition of disturbance patterns is a very important issue for process improvement since disturbance patterns would be associated with certain assignable causes which affect the process. In practical situations, after compensating by EPC, the underlying disturbance patterns could be of any mixture types which are totally different from the original patterns. This study proposes the integration of support vector machine (SVM) and artificial neural network (ANN) approaches to recognize the disturbance patterns of the underlying disturbances. Experimental results revealed that the proposed schemes are able to effectively recognize various disturbance patterns of an SPC/EPC system.


2019 ◽  
Vol 12 (3) ◽  
pp. 145 ◽  
Author(s):  
Epyk Sunarno ◽  
Ramadhan Bilal Assidiq ◽  
Syechu Dwitya Nugraha ◽  
Indhana Sudiharto ◽  
Ony Asrarul Qudsi ◽  
...  

2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


2020 ◽  
Vol 38 (2A) ◽  
pp. 255-264
Author(s):  
Hanan A. R. Akkar ◽  
Sameem A. Salman

Computer vision and image processing are extremely necessary for medical pictures analysis. During this paper, a method of Bio-inspired Artificial Intelligent (AI) optimization supported by an artificial neural network (ANN) has been widely used to detect pictures of skin carcinoma. A Moth Flame Optimization (MFO) is utilized to educate the artificial neural network (ANN). A different feature is an extract to train the classifier. The comparison has been formed with the projected sample and two Artificial Intelligent optimizations, primarily based on classifier especially with, ANN-ACO (ANN training with Ant Colony Optimization (ACO)) and ANN-PSO (training ANN with Particle Swarm Optimization (PSO)). The results were assessed using a variety of overall performance measurements to measure indicators such as Average Rate of Detection (ARD), Average Mean Square error (AMSTR) obtained from training, Average Mean Square error (AMSTE) obtained for testing the trained network, the Average Effective Processing Time (AEPT) in seconds, and the Average Effective Iteration Number (AEIN). Experimental results clearly show the superiority of the proposed (ANN-MFO) model with different features.


Sign in / Sign up

Export Citation Format

Share Document