scholarly journals Corrosion Inhibition of Mild Steel in 1 mol L−1 HCl Using Gum Exudates of Azadirachta indica

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Malarvizhi Manickam ◽  
Dheenadhayalan Sivakumar ◽  
Brindha Thirumalairaj ◽  
Mallika Jaganathan

The ability of gum exudates of Azadirachta indica (GAI) to inhibit corrosion on mild steel in 1 mol L−1 HCl has been studied using mass loss, polarization, and impedence measurements. The effect of temperature (303–323 K) and immersion time of 1, 2, 4, 6, and 12 hours on corrosion behavior of mild steel was examined. Gum exudates decrease the corrosion rate up to a concentration of 80 ppm and at 323 K temperature. GAI adsorb chemically onto the surface of the mild steel while it obeys Langmuir adsorption isotherms. Polarization studies show GAI as mixed mode inhibitor. Surface studies ascertain that a shielding layer was formed on the mild steel surface.

In this paper, we provide a comprehensive study of corrosion inhibition of mild steel in 1 M HCl solution at 313, 323, and 333 K using 4,4-Dimethyl oxazolidine-2-thione (DMOT) and its protonated form (DMOTH+ ) as inhibitors. Our results show that the corrosion rate of mild steel in 1 M HCl increases as the temperature increases while it decreases as the DMOT concentration increases. In contrast to the corrosion rate, the DMOT inhibition efficiency decreases with temperature and increases with increasing DMOT concentration. Both experimental and quantum chemical computational results reveal that the adsorption of DMOT and DMOTH+ on the mild steel surface is a mixed-type process having both physisorption and chemisorption. Moreover, the inhibitor adsorption on the mild steel surface was found to obey the Langmuir adsorption isotherm and the value of Gibbs energy of adsorption at the three studied temperatures is associated with an adsorption mechanism involving both physisorption and chemisorption processes. Heavy corrosion, cavities, and pitting of surfaces were observed in the absence of DMOT inhibitor, while much less corrosion was consistently observed in the presence of DMOT inhibitor


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Aby Paul ◽  
Joby Thomas K. ◽  
Vinod P. Raphael ◽  
K. S. Shaju

The corrosion inhibition efficiencies of Schiff base 3-formylindole-4-aminobenzoic acid (3FI4ABA) on mild steel (MS) and copper in 1.0 M HCl solution have been investigated using weight loss measurements, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies. The results show that inhibition efficiencies on both metals increase with increasing the concentration of the inhibitor. 3FI4ABA exhibited comparatively good inhibition towards mild steel in HCl medium even at low concentrations. The adsorption of inhibitor on the surfaces of the corroding metal mild steel and copper obeys the Langmuir isotherm. Polarization studies revealed that 3FI4ABA acts as a mixed-type inhibitor. Thermodynamic parameters (, ) were calculated using the Langmuir adsorption isotherm.


REAKTOR ◽  
2017 ◽  
Vol 17 (4) ◽  
pp. 177
Author(s):  
Adhi Setiawan ◽  
Nora Amelia Novitrie ◽  
Agung Nugroho ◽  
W Widiyastuti

The use of biodiesel leads to corrosion of automotive material, which can potentially shorten engine lifetime. The study aims to investigate the effect of temperature and contact time on the corrosion characteristics of carbon steel upon exposure to biodiesel synthesized from used frying oil. The corrosion rate of carbon steel was analyzed based on weight loss measurement according to the standard of ASTM G31 as affected by temperature and contact time. The immersion temperatures used in this study were 30oC, 40oC, and 70o, respectively. The contact times studied were 30 days, 40 days, and 50 days respectively. The results show that the increase of temperature and contact time of biodiesel on carbon steel surface speeds up the corrosion rate. Maximum corrosion rate (0.083 mmy) was observed on the carbon steel contacted to biodiesel at 70oC for 50 days. The SEM results showed an irregular shape of the corroded carbon steel surface. XRD / FTIR analysis of carbon steel samples show the presence of peaks, detected as Fe2O3, FeO(OH) and Fe2O2CO3, as the corrosion products. Keywords: biodiesel; carbon steel; corrosion; FAME; used frying oil


2020 ◽  
Vol 12 (1) ◽  
pp. 280-284
Author(s):  
Naja’atu Auwal Usman ◽  
Usman Muhammad Tukur ◽  
Bishir Usman

The corrosion rate of mild steel behavior exposed to effluents (EF), sea water (SW) and fresh water (FW) were study using weight loss, scanning electron spectroscopy (SEM) and x-rays diffraction (XRD). The results show that the weight loss of mild steel in different water samples increases with increasing in immersion time and temperature respectively. The corrosion rate of water was found to be higher in sea water (0.003g cm2 week-2), effluents (0.021g cm-2 week-2) and fresh water (0.020g cm-2 week-2) respectively. The corrosion rate and behaviour of mild steel in the water sample were affected by some physical and chemical parameters such as pH, turbidity, conductivity and biological oxygen demand (BOD). Effluents (EF) were found to have pH (5.20), turbidity (13.3nut), conductivity (4203µs/cm) and BOD (0.119mg/dm3). Sea water (SW) were found to have pH (7.60), turbidity (173nut), conductivity (30800µs/cm) and BOD (0.028mg/dm3). Fresh water (FW) were found to have pH (7.60), turbidity (127nut), conductivity (419µs/cm) and BOD (0.651mg/dm3). Similarly, the presences of elements such as chloride ion (Cl-), Fe, Ba, Br, S, La, Nb and Mo from XRF confirm that the corrosion rate is higher in sea water. SEM microgram revealed that corrosion rates of EF, SW and FW were of different nature, both the samples have rough surface with various cracks after immersion. This clearly shows that the sea water has the highest corrosion products follow by effluent than fresh water sample. Both the weight loss and corrosion rate increases as the immersion time and temperature increases. Keywords: Corrosion rate, Mild steel, Weight loss, AAS, SEM, XRF, Immersion Time, Temperature  


2021 ◽  
pp. 874-881
Author(s):  
Kareima A. Abdelghani ◽  
Nisrin, F. Kirallah ◽  
Saleh M. Bofarwa ◽  
A A Idress

The erosion hindrance of carbon steel in 1M HCl in nearness and nonappearance of terminated Hydrocortisone Sodium Succinate has been examined utilizing mass-loss. Comes about gotten appeared that the restraint productivity expanded with the increment of the concentration of the utilized medicate and diminished with the increment of temperature. The adsorption of this sedate on carbon steel surface takes after Langmuir’s adsorption isotherm. A few thermodynamic parameters were calculated. The motor parameters of erosion of carbon steel in HCl arrangement have been examined. Keywords: Corrosion inhibition; Carbon steel; Hydrocortisone


2011 ◽  
Vol 8 (2) ◽  
pp. 671-679 ◽  
Author(s):  
D. Nalini ◽  
R. Rajalakshmi ◽  
S. Subhashini

A heterocyclic imidazoline, 3,4,5-trimethoxyphenyl-2-imidazolines (TMP2I) was tested for its corrosion inhibition in 0.5 M H2SO4and 1 M HCl using weight loss, Tafel polarisation and electrochemical impedance techniques. The results show that the inhibition efficiency increases with the increase in concentration of TMP2I and the higher efficiency of about 98% is obtained in both the acid media at 20 ppm. The adsorption of TMP2I obeys Langmuir adsorption isotherm and occurs spontaneously. Cathodic and anodic polarization curves of mild steel in the presence of different concentrations of TMP2I at 300C reveal that it is a mixed type of inhibitor. Electrochemical impedance studies reveal that the system follows mixed mode of inhibition. The surface morphology of the mild steel specimens was evaluated using SEM images


2011 ◽  
Vol 8 (2) ◽  
pp. 621-628 ◽  
Author(s):  
M. Anwar Sathiq ◽  
A. Jamal Abdul Nasser ◽  
P. Mohamed Sirajudeen

The influence ofN-(l-morpholinobenzyl)urea (MBU) on corrosion inhibition of mild steel in 1 M HCl was studied by weight loss, effect of temperature, potentiodynamic polarization and electrochemical impedance spectroscopy. The experimental results showed that the inhibition efficiency increases with increasing of MBU concentrations but decreases with increasing temperatures. The adsorption of MBU on the mild steel surface obeyed the Temkin’s adsorption isotherm. Potentiodynamic polarization curves showed that MBU acted as a cathodic inhibitor predominantly in hydrochloric acid. This was supported by the impedance measurements which showed a change in the charge transfer resistance and double layer capacitance indicating adsorption of MBU on the mild steel surface. Protective film formation against the acid attack is confirmed by SEM.


2011 ◽  
Vol 8 (3) ◽  
pp. 1200-1205 ◽  
Author(s):  
R. Khandelwal ◽  
S. K. Arora ◽  
S. P. Mathur

The corrosion inhibition of mild steel using extracts ofCordia dichotomain different acid media was investigated by mass loss and thermometric methods. The experiments were carried out at 299±0.2 K in presence of different concentrations of dry fruit, leaves and stem extracts ofCordia dichotoma. The results reveal that the alcoholic extracts ofCordia dichotomais a better corrosion inhibitor than that of toxic chemicals. The fruit extract is more potent than leaves and stem extracts to inhibit the corrosion rate. The study seeks to investigate the possibility of using extracts ofCordia dichotomaas a green corrosion inhibitor for mild steel.


2021 ◽  
Vol 11 (2) ◽  
pp. 3509-3512

The temperature effect of 4-ethyl-1-(4-oxo-4-phenylbutanoyl)thiosemicarbazide (EOPT) on the mild steel corrosion in 1 M HCl solution was studied by gravimetric techniques at temperatures varying from 303 to 333 K. The investigated inhibitor concentrations were started from 100 ppm and ended with 500 ppm. The inhibition efficiency increased with the increase of the concentration of the inhibitor and reached 96.1% with the concentration of 500 ppm at 303 K and decreased to 66.3% at 333 K. Moreover, the inhibition efficiencies decreased with the temperature increase for both acids. Using the Langmuir adsorption isotherm for the adsorption of this inhibitor on the mild steel surface was determined. EOPT was found to be an efficient corrosion inhibitor due to its structural molecules, which contain sulfur, nitrogen, and oxygen, hetero atoms an addition to the aromatic ring.


Sign in / Sign up

Export Citation Format

Share Document