toxic chemicals
Recently Published Documents


TOTAL DOCUMENTS

1080
(FIVE YEARS 238)

H-INDEX

48
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Seddik Hammad ◽  
Christoph Ogris ◽  
Amnah Othman ◽  
Pia Erdoesi ◽  
Wolfgang Schmidt-Heck ◽  
...  

The liver has a remarkable capacity to regenerate and thus compensates for repeated injuries through toxic chemicals, drugs, alcohol or malnutrition for decades. However, largely unknown is how and when alterations in the liver occur due to tolerable damaging insults. To that end, we induced repeated liver injuries over ten weeks in a mouse model injecting carbon tetrachloride (CCl4) twice a week. We lost 10% of the study animals within the first six weeks, which was accompanied by a steady deposition of extracellular matrix (ECM) regardless of metabolic activity of the liver. From week six onwards, all mice survived, and in these mice ECM deposition was rather reduced, suggesting ECM remodeling as a liver response contributing to better coping with repeated injuries. The data of time-resolved paired transcriptome and proteome profiling of 18 mice was subjected to multi-level network inference, using Knowledge guided Multi-Omics Network inference (KiMONo), identified multi-level key markers exclusively associated with the injury-tolerant liver response. Interestingly, pathways of cancer and inflammation were lighting up and were validated using independent data sets compiled of 1034 samples from publicly available human cohorts. A yet undescribed link to lipid metabolism in this damage-tolerant phase was identified. Immunostaining revealed an unexpected accumulation of small lipid droplets (microvesicular steatosis) in parallel to a recovery of catabolic processes of the liver to pre-injury levels. Further, mild inflammation was experimentally validated. Taken together, we identified week six as a critical time point to switch the liver response program from an acute response that fosters ECM accumulation to a tolerant 'survival' phase with pronounced deposition of small lipid droplets in hepatocytes potentially protecting against the repetitive injury with toxic chemicals. Our data suggest that microsteatosis formation plus a mild inflammatory state represent biomarkers and probably functional liver requirements to resist chronic damage.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Beema Shafreen Rajamohamed ◽  
Seema Siddharthan ◽  
Velmurugan Palanivel ◽  
Mohanavel Vinayagam ◽  
Vijayanand Selvaraj ◽  
...  

The synthesis of silver nanoparticles has been gaining more attention in recent years due to their small size and high stability. For this study, silver nanoparticles were biosynthesized from leaf extract of the medicinal plant (N. arbor-tristis). Vitally, the shrub with tremendous medicinal usage was diversely observed in South Asia and South East Asia. The synthesized silver nanoparticles were characterized by color visualization, ultraviolet-visible spectrophotometry (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), field emission-scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and dynamic light scattering (DLS) technique. A sharp peak at 427 nm for biosynthesized nanoparticles was obtained using UV-Vis, which represents surface plasmon resonance. Thus, characterization techniques showed the green synthesis of AgNPs leads to the fabrication of spherical shape particles with a size of 67 nm. Furthermore, AgNPs were subjected to antibiofilm studies against Candida albicans and it was observed that 0.5 μg mL−1 of AgNPs significantly reduced 50% of biofilm formation. These biosynthesized nanoparticles also showed a considerable reduction in viability of HeLa cells at 0.5 μg mL−1. The morphological changes induced by AgNPs were observed by AO/EB staining. The toxic effect of AgNPs was studied using brine shrimp as a model system. Therefore, it is envisaged that further investigation with these AgNPs can replace toxic chemicals, assist in the development of biomedical implants that can prevent biofilm formation, and avoid infections due to C. albicans.


2022 ◽  
Author(s):  
Sachin Muralidharan ◽  
Farah Zahir ◽  
Ahmed M. Mehdi

Aims/hypothesis: The purpose of this study is to manually and semi-automatically curate a database and develop an R package that will act as a comprehensive resource to understand how biological processes are dysregulated due to interactions with environmental factors. Methods: We followed a two-step process to achieve the objectives of this study. First, we conducted a systematic review of the existing gene expression datasets to identify the integrated genomic and environmental factors used in available studies. This enabled us to curate a comprehensive genomic-environmental database for four key environmental factors (smoking, diet, infections and toxic chemicals) associated with various autoimmune and chronic conditions. Second, we developed a statistical analysis package that allows users to understand the relationships between differentially expressed genes and environmental factors under different disease conditions. Results: The initial database search run on the Gene Expression Omnibus (GEO) and the Molecular Signature Database (MSigDB) retrieved a total of 90,018 articles. After title and abstract screening against pre-set criteria, a total of 186 studies were selected. From those, 243 individual sets of genes, or gene modules, were obtained. We then curated a database containing four environmental factors, namely cigarette smoking, diet, infections and toxic chemicals, along with a total of 25789 genes that had an association with one or more of these factors. In 6 case studies, the database and statistical analysis package were then tested with lists of differentially expressed genes obtained from the published literature related to type 1 diabetes, rheumatoid arthritis, small cell lung cancer, cobalt exposure, COVID-19 and smoking. On testing, we uncovered statistically enriched biological processes, which could help us understand the pathways associated with environmental factors and gene modules. Conclusions: A novel curated database and software tool is provided as an R Package. Users can enter a list of genes to discover associated environmental factors under various disease conditions.


2022 ◽  
Author(s):  
Balamurugan Arumugam ◽  
Vimalasundari Nagarajan ◽  
Jamespandi Annaraj ◽  
Sayee Kannan Ramaraj

The eminence of water is departed owing to existing the toxic chemicals in ecological water capitals by industrial effluence is a thoughtful staple of anxiety in these days. The electrocatalytic...


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Atinafu G/Mariam ◽  
Abebe Diro ◽  
Tsegaye Girma Asere ◽  
Demelash Jado ◽  
Fekadu Melak

Fluoride health problem is a great concern worldwide, most often as a result of groundwater intake. Thus, determination of fluoride is vital to take appropriate measures upon fluoride contamination of water. Potentiometric method of analysis is reliable for the determination of fluoride in various samples. In addition, spectroscopic methods are found important to quantify fluoride levels from water; however, several factors hinder its easier determination. Among the bottlenecks, the use of toxic chemicals and tedious steps in preparing chemicals (e.g., SPADNS method) are to mention a few. In this study, a spectrophotometric method was developed for the determination of fluoride from groundwater using Eriochrome Black T (EBT) as a spectroscopic reagent. Experimental parameters that influence the determination of fluoride including ligand type, kinetics, pH, and ligand-to-metal ratio were assayed. Evaluation of fluoride levels showed that Beer–Lambert’s law is obeyed in the range of 0.3–5.0 mg/L at 544 nm. The calibration curve, resulting in good linearity (R2 = 0.9997), was considered during quantitative analysis of the samples and in the spiking analysis. The limits of detection (LOD) and quantification (LOQ) of the method were found to be 0.19 and 0.64 mg/L, respectively. The precision studied in terms of intraday and interday at three concentration levels showed less than 5.4% RSD. Applicability of the method was investigated by analyzing groundwater samples spiked with fluoride standards, and satisfactory recoveries in the range of 98.18–111.4 were demonstrated. The developed spectrophotometric method has been successfully applied for fluoride determinations in groundwater samples. Thus, it could be used as an attractive alternative for the determination of fluoride from groundwater.


2021 ◽  
Author(s):  
Sapana Jadoun ◽  
Narendra Pal Singh Chauhan ◽  
Payam Zarrintaj ◽  
Mahmood Barani ◽  
Rajender S. Varma

Abstract Nanotechnology has permeated all areas of sciences as one of the most propitious technology with the deployment of nanoparticles in environmental remediation and biomedical fields; their synthesis under greener conditions has been bourgeoned using microorganisms, plants, etc. to decrease the use of toxic chemicals. Synthesis of nanoparticles by exploiting microorganisms has opened up a new prospect at the interface of nanotechnology, chemistry, and biology enabling access via a biocompatible, safe, sustainable, eco-friendly, and reliable route; microorganisms offer crystal growth, stabilization, and prevention of aggregation thus performing a dual role of reducing and capping agent because of the presence of biomolecules such as enzymes, peptides, poly (amino acids), polyhydroxyalkanoate (PHA), and polysaccharides. Herein, the microorganisms-based synthesis of various nanoparticles comprising gold, silver, platinum, palladium, copper, titanium dioxide, zinc oxide, iron oxide, and selenium along with their appliances in waste treatment, biomedicine namely cancer treatment, antibacterial, antimicrobial, antifungal, and antioxidants, are deliberated.


2021 ◽  
Vol 28 (4) ◽  
pp. 513-543
Author(s):  
Aristo Vojdani ◽  
Elroy Vojdani

Autoimmune diseases affect 5–9% of the world’s population. It is now known that genetics play a relatively small part in the pathophysiology of autoimmune disorders in general, and that environmental factors have a greater role. In this review, we examine the role of the exposome, an individual’s lifetime exposure to external and internal factors, in the pathophysiology of autoimmune diseases. The most common of these environmental factors are toxic chemicals, food/diet, and infections. Toxic chemicals are in our food, drink, common products, the air, and even the land we walk on. Toxic chemicals can directly damage self-tissue and cause the release of autoantigens, or can bind to human tissue antigens and form neoantigens, which can provoke autoimmune response leading to autoimmunity. Other types of autoimmune responses can also be induced by toxic chemicals through various effects at the cellular and biochemical levels. The food we eat every day commonly has colorants, preservatives, or packaging-related chemical contamination. The food itself may be antigenic for susceptible individuals. The most common mechanism for food-related autoimmunity is molecular mimicry, in which the food’s molecular structure bears a similarity with the structure of one or more self-tissues. The solution is to detect the trigger, remove it from the environment or diet, then repair the damage to the individual’s body and health.


Author(s):  
Akomah, Uchechi ◽  
Nwaogazie, Ify. L ◽  
Akaranta, Onyewuchi

Recent fiscal growth has necessitated diverse industrial processes to meet the growing demands around the world. Toxic chemicals such as micro-pollutants, personal care products, pesticides contaminate the effluents of these industries and find their way into the environment leaving dangerous levels of heavy metals in the aquatic ecosystem. These heavy metals such as arsenic, chromium, lead, mercury, cadmium and nickel bio-accumulate and are very harmful to humans. Several water treatment methods were reviewed from 111 published articles covering a period between 2000-2021 on the progress of Heavy Metal removal from waste water including the use of low cost agro based activated carbon and Bentonite clay as part of “green and sustainable chemistry”.


Sign in / Sign up

Export Citation Format

Share Document