scholarly journals Thermos Array: Two-Dimensional Sparse Array with Reduced Mutual Coupling

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Lei Sun ◽  
Minglei Yang ◽  
Baixiao Chen

Sparse planar arrays, such as the billboard array, the open box array, and the two-dimensional nested array, have drawn lots of interest owing to their ability of two-dimensional angle estimation. Unfortunately, these arrays often suffer from mutual-coupling problems due to the large number of sensor pairs with small spacing d (usually equal to a half wavelength), which will degrade the performance of direction of arrival (DOA) estimation. Recently, the two-dimensional half-open box array and the hourglass array are proposed to reduce the mutual coupling. But both of them still have many sensor pairs with small spacing d, which implies that the reduction of mutual coupling is still limited. In this paper, we propose a new sparse planar array which has fewer number of sensor pairs with small spacing d. It is named as the thermos array because its shape seems like a thermos. Although the resulting difference coarray (DCA) of the thermos array is not hole-free, a large filled rectangular part in the DCA can be facilitated to perform spatial-smoothing-based DOA estimation. Moreover, it enjoys closed-form expressions for the sensor locations and the number of available degrees of freedom. Simulations show that the thermos array can achieve better DOA estimation performance than the hourglass array in the presence of mutual coupling, which indicates that our thermos array is more robust to the mutual-coupling array.

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1914
Author(s):  
Jian Xie ◽  
Qiuping Wang ◽  
Yuexian Wang ◽  
Xin Yang

Digital communication signals in wireless systems may possess noncircularity, which can be used to enhance the degrees of freedom for direction-of-arrival (DOA) estimation in sensor array signal processing. On the other hand, the electromagnetic characteristics between sensors in uniform rectangular arrays (URAs), such as mutual coupling, may significantly deteriorate the estimation performance. To deal with this problem, a robust real-valued estimator for rectilinear sources was developed to alleviate unknown mutual coupling in URAs. An augmented covariance matrix was built up by extracting the real and imaginary parts of observations containing the circularity and noncircularity of signals. Then, the actual steering vector considering mutual coupling was reparameterized to make the rank reduction (RARE) property available. To reduce the computational complexity of two-dimensional (2D) spectral search, we individually estimated y-axis and x-axis direction-cosines in two stages following the principle of RARE. Finally, azimuth and elevation angle estimates were determined from the corresponding direction-cosines respectively. Compared with existing solutions, the proposed method is more computationally efficient, involving real-valued operations and decoupled 2D spectral searches into twice those of one-dimensional searches. Simulation results verified that the proposed method provides satisfactory estimation performance that is robust to unknown mutual coupling and close to the counterparts based on 2D spectral searches, but at the cost of much fewer calculations.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Luo Chen ◽  
Changbo Ye ◽  
Baobao Li

While the two-dimensional (2D) spectral peak search suffers from expensive computational burden in direction of arrival (DOA) estimation, we propose a reduced-dimensional root-MUSIC (RD-Root-MUSIC) algorithm for 2D DOA estimation with coprime planar array (CPA), which is computationally efficient and ambiguity-free. Different from the conventional 2D DOA estimation algorithms based on subarray decomposition, we exploit the received data of the two subarrays jointly by mapping CPA to the full array of the CPA (FCPA), which contributes to the enhanced degrees of freedom (DOFs) and improved estimation performance. In addition, due to the ambiguity-free characteristic of the FCPA, the extra ambiguity elimination operation can be avoided. Furthermore, we convert the 2D spectral search process into 1D polynomial rooting via reduced-dimension transformation, which substantially reduces the computational complexity while preserving the estimation accuracy. Finally, numerical simulations demonstrate the superiority of the proposed algorithm.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 878
Author(s):  
Baoping Wang ◽  
Junhao Zheng

To effectively find the direction of non-circular signals received by a uniform linear array (ULA) in the presence of non-negligible perturbations between array elements, i.e., mutual coupling, in colored noise, a direction of arrival (DOA) estimation approach in the context of high order statistics is proposed in this correspondence. Exploiting the non-circularity hidden behind a certain class of wireless communication signals to build up an augmented cumulant matrix, and carrying out a reformulation of the distorted steering vector to extract the angular information from the unknown mutual coupling, by exploiting the characteristic of mutual coupling, i.e., a limited operating range and an inverse relation of coupling effects to interspace, we develop a MUSIC-like estimator based on the rank-reduction (RARE) technique to directly determine directions of incident signals without mutual coupling compensation. Besides, we provide a solution to the problem of coherency between signals and mutual coupling between sensors co-existing, by selecting a middle sub-array to mitigate the undesirable effects and exploiting the rotation-invariant property to blindly separate the coherent signals into different groups to enhance the degrees of freedom. Compared with the existing robust DOA methods to the unknown mutual coupling under the framework of fourth-order cumulants (FOC), our work takes advantage of the larger virtual array and is able to resolve more signals due to greater degrees of freedom. Additionally, as the effective aperture is virtually extended, the developed estimator can achieve better performance under scenarios with high degree of mutual coupling between two sensors. Simulation results demonstrate the validity and efficiency of the proposed method.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhikun Chen ◽  
Tao Li ◽  
Dongliang Peng ◽  
Kang Du

Polarized smart antenna array has attracted considerable interest due to its capacity of matched reception or interference suppression for active sensing systems. Existing literature does not take full advantage of the combination of polarization isolation and smart antennas and only focuses on uniform linear array (ULA). In this paper, an innovative synthesis two-dimensional beampattern method with a null that has cross-polarization for polarized planar arrays is proposed in the first stage. This method aims to further enhance the capability of interference suppression whose optimization problem can be solved by second-order conic programming. In the second stage, a new sparse array-optimized method for the polarized antenna array is proposed to reduce the high cost caused by the planar array that is composed of polarized dipole antennas. Numerical examples are provided to demonstrate the advantages of the proposed approach over state-of-the-art methods.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Chen Gu ◽  
Hong Hong ◽  
Yusheng Li ◽  
Xiaohua Zhu ◽  
Jin He

This paper proposes a multi-invariance ESPRIT-based method for estimation of 2D direction (MIMED) of multiple non-Gaussian monochromatic signals using cumulants. In the MIMED, we consider an array geometry containing sparse L-shaped diversely polarized vector sensors plus an arbitrarily-placed single polarized scalar sensor. Firstly, we define a set of cumulant matrices to construct two matrix blocks with multi-invariance property. Then, we develop a multi-invariance ESPRIT-based algorithm with aperture extension using the defined matrix blocks to estimate two-dimensional directions of the signals. The MIMED can provide highly accurate and unambiguous direction estimates by extending the array element spacing beyond a half-wavelength. Finally, we present several simulation results to demonstrate the superiority of the MIMED.


2021 ◽  
pp. 103268
Author(s):  
Xiangnan Li ◽  
Weijiang Wang ◽  
Xiaohua Wang ◽  
Shiwei Ren

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2176 ◽  
Author(s):  
Xiaofeng Gao ◽  
Xinhong Hao ◽  
Ping Li ◽  
Guolin Li

In this paper, an improved two-dimensional (2-D) direction of arrival (DOA) estimation algorithm for L-shaped nested arrays is proposed. Unlike the approach for a classical nested array, which use the auto-correlation matrix (ACM) to increase the degrees of freedom (DOF), we utilize the cross-correlation matrix (CCM) of different sub-arrays to generate two long consecutive virtual arrays. These acquire a large number of DOF without redundant elements and eliminate noise effects. Furthermore, we reconstruct the CCM based on the singular value decomposition (SVD) operation in order to reduce the perturbation of noise for small numbers of samples. To cope with the matrix rank deficiency of the virtual arrays, we construct the full rank equivalent covariance matrices by using the output and its conjugate vector of virtual arrays. The unitary estimation of signal parameters via rotational invariance technique (ESPRIT) is then performed on the covariance matrices to obtain the DOA of incident signals with low computational complexity. Finally, angle pairing is achieved by deriving the equivalent signal vector of the virtual arrays using the estimated angles. Numerical simulation results show that the proposed algorithm not only provides more accurate 2-D DOA estimation performance with low complexity, but also achieves angle estimation for small numbers of samples compared to existing similar methods.


Sign in / Sign up

Export Citation Format

Share Document