scholarly journals Study on the Effect of Oxygen Defects on the Electrical and Optical Properties of Thin Films

Scanning ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Jin Jeong

SnO2 thin films grown directly on the Si substrate had larger average grain sizes as the power intensity increased, but the average grain size of the SnO2 thin films grown in oxygen atmosphere decreased as the power intensity increased. Hall measurement of pure SnO2 thin films showed that the carrier density increased with increasing power. However, upon annealing the SnO2 thin films, the carrier density decreased with increasing power owing to the formation of oxygen vacancies and the SiO2 layer between the Si substrate and SnO2 thin films. The photoluminescence (PL) of the SnO2 thin film grown in the oxygen atmosphere changed, and it was affected by the oxygen defects at the surface and interfaces of the thin film.

2009 ◽  
Vol 1199 ◽  
Author(s):  
Seiji Nakashima ◽  
Hironori Fujisawa ◽  
Jung Min Park ◽  
Takeshi Kanashima ◽  
Masanori Okuyama ◽  
...  

AbstractWe have investigated relationships between leakage current and microstructure or domain structure of BiFeO3 (BFO) thin films, and leakage current mappings of BFO thin films have been performed by current sensitive AFM. 350-nm-thick and 250-nm-thick BFO thin films were prepared on Pt/TiO2/SiO2/Si substrate by pulsed laser deposition (PLD) and chemical solution deposition (CSD), respectively. Average grain size of PLD-BFO thin film is about 480 nm, which is the same as the film thickness. From the leakage current mapping at a bias voltage of -16 Vdc, leakage current of the BFO thin film flows through not only grain boundary but also the grain itself. On the other hand, CSD-BFO thin film shows rosette structure and small size grains. From the leakage current mapping at a bias voltage of -10 Vdc, leakage current flows along boundaries of the rosette structures. These results indicate that leakage current of BFO strongly depends on its microstructure.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Weiguang Zhang ◽  
Jijun Li ◽  
Yongming Xing ◽  
Xiaomeng Nie ◽  
Fengchao Lang ◽  
...  

SiO2 thin films are widely used in micro-electro-mechanical systems, integrated circuits and optical thin film devices. Tremendous efforts have been devoted to studying the preparation technology and optical properties of SiO2 thin films, but little attention has been paid to their mechanical properties. Herein, the surface morphology of the 500-nm-thick, 1000-nm-thick and 2000-nm-thick SiO2 thin films on the Si substrates was observed by atomic force microscopy. The hardnesses of the three SiO2 thin films with different thicknesses were investigated by nanoindentation technique, and the dependence of the hardness of the SiO2 thin film with its thickness was analyzed. The results showed that the average grain size of SiO2 thin film increased with increasing film thickness. For the three SiO2 thin films with different thicknesses, the same relative penetration depth range of ~0.4–0.5 existed, above which the intrinsic hardness without substrate influence can be determined. The average intrinsic hardness of the SiO2 thin film decreased with the increasing film thickness and average grain size, which showed the similar trend with the Hall-Petch type relationship.


2010 ◽  
Vol 17 (05n06) ◽  
pp. 445-449 ◽  
Author(s):  
SUHUA FAN ◽  
QUANDE CHE ◽  
FENGQING ZHANG

The (100)-oriented Ca0.4Sr0.6Bi4Ti4O15(C0.4S0.6BTi ) thin film was successfully prepared by a sol-gel method on Pt/Ti/SiO2/Si substrate. The orientation and formation of thin films under different annealing schedules were studied using XRD and SEM. XRD analysis indicated that (100)-oriented C0.4S0.6BTi thin film with degree of orientation of I(200)/I(119) = 1.60 was prepared by preannealing the film at 400°C for 3 min followed by rapid thermal annealing at 800°C for 5 min. SEM analysis further indicated that the (100)-oriented C0.4S0.6BTi thin film with a thickness of about 800 nm was mainly composed of equiaxed grains. The remanent polarization and coercive field of the film were 16.1 μC/cm2 and 85 kV/cm, respectively.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 954
Author(s):  
Anna Cyza ◽  
Łukasz Cieniek ◽  
Tomasz Moskalewicz ◽  
Wojciech Maziarz ◽  
Jan Kusiński ◽  
...  

The aim of the presented investigations was to deposit the thin films La1−xSrxFeO3 (x = 0, 0.1, 0.2) on (100) Si substrate by using the Pulsed Laser Deposition (PLD) method. Structure was exanimated by using XRD, SEM, AFM, TEM and XPS methods. The catalytic properties were analyzed in 4 ppm acetone atmosphere. The doping of Sr thin films La1−xSrxFeO3 (x = 0, 0.1, 0.2) resulted in a decrease in the size of the crystallites, the volume of the elemental cell and change in the grain morphology. In the LaFeO3 and La0.9Sr0.1FeO3, clusters around which small grains grow are visible in the structure, while in the layer La0.8Sr0.2FeO3, the visible grains are elongated. The TEM analysis has shown that the obtained thin films had a thickness in the range 150–170 nm with triangular or flat column ends. The experiment performed in the presence of gases allowed us to conclude that the surfaces (101/020) in the triangle-shaped columns and the plane (121/200) faces in flat columns were exposed to gases. The best properties in the presence of CH3COCH3 gas were noted for LaFeO3 thin film with triangle columns ending with orientation (101/020).


1997 ◽  
Vol 493 ◽  
Author(s):  
Han Wook Song ◽  
Joon Sung Lee ◽  
Dae-Weon Kim ◽  
Kwang Ho Kim ◽  
Tae-Hyun Sung ◽  
...  

ABSTRACTMgO thin films were deposited on Si(100) substrate with different temperatures from 500 °C to 800 °C and different e-beam powers from 25W to 100W using e-beam evaporation method. Pb(Zr0.53Ti0.47)O3(PZT) thin films were deposited on MgO/Si(100) substrates with different drying temperatures from 190 °C to 310 °C using sol-gel technique. If there were no buffer layer between the PZT thin film and Si substrate, the peaks corresponding to perovskite PZT phase were not observed. However the buffer layer were inserted between the PZT thin film and Si substrate, it was possible to fabricate perovskite PZT phase. The barrier effects of MgO thin film to the interdiffusion of Pb were investigated by AES study. Optimum thickness of MgO at which PZT/MgO/Si structure shows P-E hysteresis was calculated, and the hysteresis was tested for PZT/MgO/Si structures with different MgO thicknesses.


1997 ◽  
Vol 493 ◽  
Author(s):  
YongSoo Choi ◽  
WooSik Kim ◽  
ChangEun Kim ◽  
WhanSik Yoo ◽  
BaeYeon Kim ◽  
...  

ABSTRACTStable SBT sols for FRAM application were made from Sr-isopropoxide, Bi-acetate, and Ta-ethoxide with 2-ethoxyethanol as a solvent and chelating agent, TEA. The sol were spin-on coated on the Pt /Ti/SiO2/Si substrate. From the IR and DTA/TGA, the 2-ethoxyethanol -triethanolamine sol system is quite stable against aging. 5% excess Bi added sol and 800°C heat treatment of the thin film revealed the most crystallinity. There is a change in the orientation of thin film above 800°C heat treatment from c-axis to(105). The average grain size of thin film is very small, i.e., 40 nm at 800°C, and it has very narrow distributions, and the thickness of the coating were about 100nm, which would promise smaller electrode area and higher yield.


2021 ◽  
Author(s):  
srinivasa varaprsad H ◽  
sridevi P. V ◽  
Satya Anuradha M ◽  
Srinivas Pattipaka ◽  
pamu D

Abstract Perovskites are important composites in the area of multidisciplinary applications. It is achieved by carefully choosing and tuning the properties of the thin-film at the deposition. In this paper, ZnTiO3 (ZTO) thin-films were being deposited on quartz and N-Si substrates by RF magnetron sputtering. The thin-films were developed at room temperature, oxygen percentage levels varying from 0 to 100, and annealed at 600oC. The electrical, optical, morphological, and structural properties were analyzed as a function of oxygen mixing percentage (OMP). The crystallinity of the cubic structured ZTO thin-film is found to be high at 25 OMP, and it is gradually decreased with increased OMP. The surface morphology of the thin-film is observed, and roughness is measured from the atomic force microscope. Raman Spectroscopy investigated the phase formation and the vibrational modes of the thin-film with their spectral de-convolution. The ZTO thin-films optical properties were investigated using transmittance spectra. The ZTO thin-film indicated the highest refractive index of 2.46, at 633nm with optical bandgap values of 3.57 eV, with a thickness of 145nm and 25 OMP. The refractive index, thin-film thickness, and excitation coefficient were analyzed using the Swanepoel envelope technique. Electrical characteristics of ZTO thin-film are measured from the optimized conditions of the thin-film with conventional thermionic emission (TE) technique.


2006 ◽  
Vol 45 ◽  
pp. 2351-2354
Author(s):  
Ji Won Choi ◽  
Chong Yun Kang ◽  
Jin Sang Kim ◽  
Seok Jin Yoon ◽  
Hyun Jai Kim ◽  
...  

The dielectric properties of (Ba,Sr)TiO3 (BSTO) and Zr doped BSTO thin films have been investigated to identify candidate thin film dielectric materials having low dielectric loss without degradation of the tunability by continuous composition spread (CCS) technique using off-axis rf magnetron sputtering. The optimized properties of BSTO thin films deposited on Pt/SiO2/Si substrate by CCS were dielectric loss 0.031, tunability 31.5, respectively. The optimized properties of Zr doped BSTO thin films deposited on Pt/SiO2/Si substrate by CCS were improved by dielectric loss 42%, FOM 68% at the same BSTO composition, respectively. To confirm the dielectric properties and compositions by CCS technique, Zr doped BSTO bulk ceramics were evaluated.


2019 ◽  
Vol 26 (03) ◽  
pp. 1850166 ◽  
Author(s):  
HUITING SUI ◽  
HUAJUN SUN ◽  
XIAOFANG LIU ◽  
SHANSHAN GUO ◽  
HUAN YANG ◽  
...  

BiFe[Formula: see text]CrxO3 ([Formula: see text]BFCO, [Formula: see text], 0.02, 0.03, 0.04, 0.05) thin films were successfully fabricated onto Pt(111)/TiO2/SiO2/Si substrate via a solgel process. The correlation between microstructure and insulating, ferroelectric properties of [Formula: see text]BFCO thin films are investigated. The leakage behavior for all the thin films is in accordance with the Ohmic conduction and FN Tunneling emission during low and high electric field region, respectively. Compared with the pure BFO, all the thin films with Cr[Formula: see text] doping possess reduced leakage current density by 1–2 orders of magnitude, with the lowest value approximately 10[Formula: see text] at 200[Formula: see text]kV/cm. Moreover, the 0.04BFCO thin film exhibits the maximum remanent polarization ([Formula: see text]) value of 29.8[Formula: see text][Formula: see text]C/cm2 with a great fatigue behavior, which could be ascribed to the absence of impurity phase and reduced leakage current.


2002 ◽  
Vol 747 ◽  
Author(s):  
Naoki Wakiya ◽  
Tomohiko Moriya ◽  
Kazuo Shinozaki ◽  
Nobuyasu Mizutani

ABSTRACTYttria stabilized zirconia (YSZ) and zirconia (ZrO2) thin films without and with Nb-doping were prepared on Si substrate by rf-magnetron sputtering. Undoped YSZ and ZrO2 thin films had (001) orientation, and the orientation was unchanged by the Nb-doping. For both undoped YSZ and ZrO2 thin films, around 2.0 V ion-drift type hysteresis was clearly observed in capacitance-voltage (C-V) characteristics. Nb-doping into YSZ brought about the increase of lattice parameter up to 20 mol% of Nb, which suggests that Nb was incorporated into YSZ lattice up to 20 mol%. By the Nb-doping, the hysteresis in C-V characteristics for YSZ thin film was considerable decreased to around 0.1 V. Drastic suppression of the hysteresis in C-V characteristics was observed for Nb-doped ZrO2 thin film. In this case, the hysteresis was completely disappeared. These facts suggest that oxygen vacancies in YSZ and ZrO2 thin films would be suppressed or disappeared by Nb-doping. This means that Nb is a excellent dopant for both YSZ and ZrO2 to suppress the ion-drift type hysteresis.


Sign in / Sign up

Export Citation Format

Share Document