scholarly journals Deformation Monitoring and Stability Analysis of Shaft Lining in Weakly Cemented Stratum

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Xianzhou Lyu ◽  
Weiming Wang

Shaft linings in thick weakly cemented stratum have the disadvantages of large deformation and repeated damage after repair. Considering the typical geologic characteristics and the failure characteristics of shaft linings, we establish a multilayer automatic deformation monitoring system in this paper, and the monitoring system can realize the real-time, continuous, and long-term dynamic monitoring on shaft linings. Based on the concrete strength failure criterion under biaxial compression and the analytical solution for spatially axisymmetric problem of thick-wall cylinders, the damage limit of the shaft lining in Xieqiao coal mine is obtained. Then, we choose three sections as the test area according to the typical damage forms of shaft linings to carry out the monitoring scheme on the auxiliary shaft in Xieqiao coal mine. The monitoring results show that the extreme value of the shaft lining deformation is 2.369 mm. And the shaft lining located in the border between the floor aquifer and the bedrock generates the most severe deformation, which is about 89.4% of the deformation limit. The shaft lining deformation increment fluctuates in certain range, which belongs to elastic deformation. Finally, we inverse the stress state according to the deformation value of the shaft lining, and the obtained additional stress is found to be lower than the ultimate compressive strength. Long-term project practice confirms that the deformation monitoring results can reflect the real stress condition of the shaft lining and that the monitoring system can realize the real-time dynamic evaluation for the status of the shaft lining.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Fu-guang Zhu ◽  
Dong-sheng Xu ◽  
Rui-shan Tan ◽  
Bin Peng ◽  
He Huang ◽  
...  

The settlement and deformation monitoring of subway tunnels had difficult in long-distance and real time measurement. This study proposed an optic-electric hybrid sensor based on infrared laser ranging technology and cable-sensing technology. The working principle, hardware layer, design details, laboratory calibration and field validation were presented and discussed. The optic-electric hybrid sensor implemented the real-time intelligent analysis modulus for the whole system which could analysis the measurement errors and improve the accuracy. The laboratory calibration tests were carried out and the results shown that the hybrid sensors had measurement resolution of 1 mm with the maximum measurement range of 100 m. A remote real-time intelligent monitoring system is established based on the hybrid sensors. The system contains an edge computing module, real-time communication module and warning light signal with three colors. The stability of data acquisition and transmission of the intelligent control monitoring system under long-term conditions was examined. Test results shown that the system was quite stable for the long-term measurement. The whole system was verified in a constructing subway tunnel of Wuhan Metro Line 8, China. According to the field monitoring results, the deformations and the state of health safety of the tunnel was evaluated. The results of this study could provide useful guidance for tunnel deformation monitoring and has great practical value in civil engineering.


2021 ◽  
Vol 30 (1) ◽  
Author(s):  
Yongquan Ge ◽  
Chengxin Yu ◽  
Tonglong Zhao ◽  
Xiaodong Liu

The spatial structure building is a type of building system; it is necessary to monitor deformation to determine its stability and robustness. Under the dynamic deformation of structures, it is challenging to determine appropriate zero image (the reference image) if we use the PST-IM- MP (photograph scale transformation-image matching-motion parallax) method to obtain the deformation of structures. This paper offers the Z-MP (zero-centered motion parallax) method to solve these problems and offers PDMS (Photography Dynamic Monitoring System) based on the digital photography system to monitor the dynamic deformation of the tennis stadium located in Jinan Olympic Sports Center. The results showed that the spatial structures of the tennis stadium were robust, and the deformations were elastic and within the permissible value. Compared with the PST-IM-MP method, the Z-MP method is more suitable for deformation monitoring structures under real-time deformation. This paper indicates PDMS has advantages of the simplicity of operations, automation, and the ability of non-contact dynamic deformation monitoring for multiple points in a short period. In the future, it will have broader application prospects.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yongfei Wang ◽  
Dingbin Shen ◽  
Jiankang Chen ◽  
Liang Pei ◽  
Yanling Li ◽  
...  

Deformation monitoring is one of the most important means of providing feedback to ensure the safety of projects. Problems plague the existing automatic monitoring system, such as the small monitoring range of monitoring devices, the inadequate field safety protection, and the low accuracy under extreme weather conditions. These problems greatly reduce the real time and reliability of deformation monitoring data and restrict the real-time intelligent control of engineering safety risk. In this paper, a multitype instrument-integrated monitoring system based mainly on the total positioning station (TPS) and supplemented by the Global Navigation Satellite System (GNSS) was promoted with the methods of large field angle, data complementation, environmental perception and judgment, automatic status control, and baseline calibration-meteorological fusion correction. The application results of Pubugou Station show that the averages of mean square error of points (APMSE) for the dam are 0.41∼1.65 mm and the averages of mean square error of height (AHMSE) are 0.42∼0.89 mm. Moreover, the APMSE and AHMSE for the slope are less than 3 mm. The maximum relative error of the TPS and GNSS data compared with the artificial monitoring data is less than 10%. Besides, the system has good overall performance and is of significant comprehensive benefits. The proposed system realizes the all-weather real-time monitoring of deformation and enhances the emergency response capability of special conditions in dams during the operation period.


Author(s):  
Ö. Avsar ◽  
D. Akca ◽  
O. Altan

Improving the efficiency of bridge inspection and minimizing the impact of dynamic load on the long term deterioration of the bridge structure reduces maintenance and upkeep costs whilst also improving bridge longevity and safety. This paper presents the results of an on-going project whose ultimate goal is the real-time photogrammetric monitoring the structural deformations of the second Bosphorus Bridge of Istanbul.


2012 ◽  
Vol 155-156 ◽  
pp. 825-830
Author(s):  
Bo Qiang Shi ◽  
Chen Guang Zhao ◽  
Zhi Jun Hao ◽  
Ming Chong Xu ◽  
Chen Tong Bian

Underground equipments in coal mine is a complex system, in order to ensure coal mine works safety, monitor the status of underground equipments is an important part in commanding and dispatching system. Monitoring system for underground equipments based on panoramic images, is combined with the static panoramic images of underground surrounding and real-time sensor data, not only realize real-time status monitoring for underground equipments, but also get a direct impression for underground surrounding. B/S mode is applied in the monitoring system, is convenient for users to monitor the equipments, decreases the load of the DB Server. Meantime it can reduce the waste of the resource. Therefore it is a simple and effective monitoring system.


2020 ◽  
Author(s):  
Han Chung Yang ◽  
Chih Chiang Su ◽  
Yen Chang Chen

<p>A wireless tracer real-time monitoring system was developed and verified to be suitable for the real-time remote dynamic monitoring of typhoon- and flood-related scour at riverbeds and human-made structures (such as bridge abutments, spur dikes, and embedments). This study focused on the use of a wireless tracer to aid the real-time dynamic monitoring of natural disasters, including slope landslides, thus devising a real-time warning system for sediment disaster prevention and response. We selected Dajin Bridge, which is situated at Taiwan’s Zhoukou River, as the research site for deploying the monitoring system. Monitoring stations for detecting changes in the river’s course were established at both a downstream meander of the Dajin Bridge and a nearby revetment. Specifically, scour monitoring columns were separately buried at these two locations. Each column was equipped with five wireless tracers, and 16 coding sand jars were used to facilitate vertical installation of wireless tracers. Real-time monitoring stations for tracking slope changes were constructed using two methods. In both methods, an upright column was used to install the tracers, and a shielding net cover was additionally used in the second method to expand its monitoring range. After several heavy rain events, no slides or landslides were detected by the landslide stations; an on-site investigation corroborated this observation. As for the detection of the change in the river’s course, three wireless tracers were flushed away. Nonetheless, because the scour depth posed no immediate threat to river bank safety, additional safety measures were not required. The remaining wireless tracers were also adequate for the safety monitoring of river banks, bridges, and other structures within the research area. The aforementioned results demonstrate the effectiveness of the devised remote real-time monitoring system for detecting environmental changes. The system can thus provide real-time remote safety information on changes in slope and a river’s course for residents in mountainous areas.</p>


Sign in / Sign up

Export Citation Format

Share Document