scholarly journals Estimating Remaining Useful Life for Degrading Systems with Large Fluctuations

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Dang-Bo Du ◽  
Jian-Xun Zhang ◽  
Zhi-Jie Zhou ◽  
Xiao-Sheng Si ◽  
Chang-Hua Hu

Remaining useful life (RUL) prediction method based on degradation trajectory has been one of the most important parts in prognostics and health management (PHM). In the conventional model, the degradation data are usually used for degradation modeling directly. In engineering practice, the degradation of many systems presents a volatile situation, that is, fluctuation. In fact, the volatility of degradation data shows the stability of system, so it could be used to reflect the performance of system. As such, this paper proposes a new degradation model for RUL estimation based on the volatility of degradation data. Firstly the degradation data are decomposed into trend items and random items, which are defined as a stochastic process. Then the standard deviation of the stochastic process is defined as another performance variable because standard deviation reflects the system performance. Finally the Wiener process and the normal stochastic process are used to model the trend items and random items separately, and then the probability density function (PDF) of the RUL is obtained via a redefined failure threshold function that combines the trend items and the standard deviation of the random items. Two practical case studies demonstrate that, compared with traditional approaches, the proposed model can deal with the degradation data with many fluctuations better and can get a more reasonable result which is convenient for maintenance decision.

2020 ◽  
Vol 14 ◽  
Author(s):  
Dangbo Du ◽  
Jianxun Zhang ◽  
Xiaosheng Si ◽  
Changhua Hu

Background: Remaining useful life (RUL) estimation is the central mission to the complex systems’ prognostics and health management. During last decades, numbers of developments and applications of the RUL estimation have proliferated. Objective: As one of the most popular approaches, stochastic process-based approach has been widely used for characterizing the degradation trajectories and estimating RULs. This paper aimed at reviewing the latest methods and patents on this topic. Methods: The review is concentrated on four common stochastic processes for degradation modelling and RUL estimation, i.e., Gamma process, Wiener process, inverse Gaussian process and Markov chain. Results: After a briefly review of these four models, we pointed out the pros and cons of them, as well as the improvement direction of each method. Conclusion: For better implementation, the applications of these four approaches on maintenance and decision-making are systematically introduced. Finally, the possible future trends are concluded tentatively.


Author(s):  
Behrad Bagheri ◽  
David Siegel ◽  
Wenyu Zhao ◽  
Jay Lee

Preventing catastrophic failures is the most important task of prognostics and health management approaches in industry where Remaining Useful Life (RUL) prediction plays a significant role to schedule required preventive actions. Regarding recent advances and trends in data analysis and in Big Data environment, industries with such foreseeing approach are able to maintain their fleet of assets more efficiently with higher assurance. To address this requirement, several physics-based and data-driven methods have been developed to predict the remaining useful life of various engineering systems. In current paper, we present a simple, yet accurate stochastic method for data-driven RUL prediction of complex engineering system. The approach is constructed based on selecting the most significant parameters from raw data by using the improved distance evaluation method as feature selection algorithms. Subsequently, the health value of units is assessed by logistic regression and the assessment output is used in a Monte Carlo simulation to estimate the remaining useful life of the desired system. During Monte Carlo iterations, several features are extracted to help filtering less accurate estimations and improve the overall prediction accuracy. The proposed algorithm is validated in two ways. First of all, the accuracy of RUL prediction is measured by applying the method to 2008 PHM data challenge gas-turbine dataset. Subsequently, gradual changes in RUL prediction of a particular test unit are measured to verify the behavior of the algorithm upon availability of additional historical data.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yuhuang Zheng

Prognostics health management (PHM) of rotating machinery has become an important process for increasing reliability and reducing machine malfunctions in industry. Bearings are one of the most important equipment parts and are also one of the most common failure points. To assess the degradation of a machine, this paper presents a bearing remaining useful life (RUL) prediction method. The method relies on a novel health indicator and a linear degradation model to predict bearing RUL. The health indicator is extracted by using Hilbert–Huang entropy to process horizontal vibration signals obtained from bearings. We present a linear degradation model to estimate RUL using this health indicator. In the training phase, the degradation detection threshold and the failure threshold of this model are estimated by the distribution of 600 bootstrapped samples. These bootstrapped samples are taken from the six training sets. In the test phase, the health indicator and the model are used to estimate the bearing’s current health state and predict its RUL. This method is suitable for the degradation of bearings. The experimental results show that this method can effectively monitor bearing degradation and predict its RUL.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2784 ◽  
Author(s):  
Lin Li ◽  
Alfredo Alan Flores Saldivar ◽  
Yun Bai ◽  
Yun Li

Accurately forecasting a battery’s remaining useful life (RUL) plays an important role in the prognostics and health management of rechargeable batteries. An effective forecast is reported using a particle filter (PF), but it currently suffers from particle degeneracy and impoverishment deficiencies in RUL evaluations. In this paper, an inheritance PF is developed to predict lithium-ion battery RUL for the first time. A battery degradation model is first mapped onto a PF problem using the genetic algorithm (GA) framework. Then, a Lamarckian inheritance operator is designed to improve the light-weight particles by heavy-weight ones and thus to tackle particle degeneracy. In addition, the inheritance mechanism retains certain existing information to tackle particle impoverishment. The performance of the inheritance PF is compared with an elitism GA-based PF. The former has fewer tuning parameters than the latter and is less sensitive to tuning parameters. Both PFs are applied to the prediction of lithium-ion battery RUL, which is validated using capacity degradation data from the NASA Ames Research Center. The experimental results show that the inheritance PF method offers improved RUL prediction and wider applications. Further improvement is obtained with one-step ahead prediction when the charging and discharging cycles move along.


2021 ◽  
Vol 11 (9) ◽  
pp. 4113
Author(s):  
Viet Tra ◽  
Tuan-Khai Nguyen ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Remaining useful life (RUL) prognosis is one of the most important techniques in concrete structure health management. This technique evaluates the concrete structure strength through determining the advent of failure, which is very helpful to reduce maintenance costs and extend structure life. Degradation information with the capability of reflecting structure health can be considered as a principal factor to achieve better prognosis performance. In traditional data-driven RUL prognosis, there are drawbacks in which features are manually extracted and threshold is defined to mark the specimen’s breakdown. To overcome these limitations, this paper presents an innovative SAE-DNN structure capable of automatic health indicator (HI) construction from raw signals. HI curves constructed by SAE-DNN have much better fitness metrics than HI curves constructed from statistical parameters such as RMS, Kurtosis, Sknewness, etc. In the next stage, HI curves constructed from training degradation data are then used to train a long short-term memory recurrent neural network (LSTM-RNN). The LSTM-RNN is utilized as a RUL predictor since its special gates allow it to learn long-term dependencies even when the training data is limited. Model construction, verification, and comparison are performed on experimental reinforced concrete (RC) beam data. Experimental results indicates that LSTM-RNN generally estimates more accurate RULs of concrete beams than GRU-RNN and simple RNN with the average prediction error cycles was less than half compared to those of the simple RNN.


Author(s):  
Yu Zang ◽  
Wei Shangguan ◽  
Baigen Cai ◽  
Huasheng Wang ◽  
Michael. G. Pecht

Author(s):  
Zongyi Mu ◽  
Yan Ran ◽  
Genbao Zhang ◽  
Hongwei Wang ◽  
Xin Yang

Remaining useful life (RUL) is a crucial indictor to measure the performance degradation of machine tools. It directly affects the accuracy of maintenance decision-making, thus affecting operational reliability of machine tools. Currently, most RUL prediction methods are for the parts. However, due to the interaction among the parts, even RUL of all the parts cannot reflect the real RUL of the whole machine. Therefore, an RUL prediction method for the whole machine is needed. To predict RUL of the whole machine, this paper proposes an RUL prediction method with dynamic prediction objects based on meta-action theory. Firstly, machine tools are decomposed into the meta-action unit chains (MUCs) to obtain suitable prediction objects. Secondly, the machining precision unqualified rate (MPUR) control chart is used to conduct an out of control early warning for machine tools’ performance. At last, the Markov model is introduced to determine the prediction objects in next prediction and the Wiener degradation model is established to predict RUL of machine tools. According to the practical application, feasibility and effectiveness of the method is proved.


2021 ◽  
Author(s):  
Mohammad Rubyet Islam ◽  
Peter Sandborn

Abstract Prognostics and Health Management (PHM) is an engineering discipline focused on predicting the point at which systems or components will no longer perform as intended. The prediction is often articulated as a Remaining Useful Life (RUL). RUL is an important decision-making tool for contingency mitigation, i.e., the prediction of an RUL (and its associated confidence) enables decisions to be made about how and when to maintain the system. PHM is generally applied to hardware systems in the electronics and non-electronics application domains. The application of PHM (and RUL) concepts has not been explored for application to software. Today, software (SW) health management is confined to diagnostic assessments that identify problems, whereas prognostic assessment potentially indicates when in the future a problem will become detrimental to the operation of the system. Relevant areas such as SW defect prediction, SW reliability prediction, predictive maintenance of SW, SW degradation, and SW performance prediction, exist, but all represent static models, built upon historical data — none of which can calculate an RUL. This paper addresses the application of PHM concepts to software systems for fault predictions and RUL estimation. Specifically, we wish to address how PHM can be used to make decisions for SW systems such as version update, module changes, rejuvenation, maintenance scheduling and abandonment. This paper presents a method to prognostically and continuously predict the RUL of a SW system based on usage parameters (e.g., numbers and categories of releases) and multiple performance parameters (e.g., response time). The model is validated based on actual data (on performance parameters), generated by the test beds versus predicted data, generated by a predictive model. Statistical validation (regression validation) has been carried out as well. The test beds replicate and validate faults, collected from a real application, in a controlled and standard test (staging) environment. A case study based on publicly available data on faults and enhancement requests for the open-source Bugzilla application is presented. This case study demonstrates that PHM concepts can be applied to SW systems and RUL can be calculated to make decisions on software version update or upgrade, module changes, rejuvenation, maintenance schedule and total abandonment.


Sign in / Sign up

Export Citation Format

Share Document