Estimation of Vehicle Carbon Emissions in China Accounting for Vertical Curve Effects
Predicting vehicle carbon emissions on vertical curve sections can provide guidance for low-carbon vertical profile designs. Given that the influence of vertical curve design indicators on the fuel consumption and CO2 emissions of vehicles are underexplored, this study filled this research gap by establishing a theoretical carbon emission model of vehicles on vertical curve sections. The carbon emission model was established based on Xu’s vehicle energy conversion model, the conversion model of energy, fuel consumption, and CO2 emissions. The accuracy of the theoretical carbon emission model and the CO2 emission rules on vertical curve sections were verified by field test results. Field tests were carried out on flat sections, longitudinal slope sections, and various types of vertical curve sections, with five common types of vehicles maintaining cruising speed. The carbon emission rate effects on the vertical curve are closely related to the gradient and irrelevant of the radius. On the vertical profile composed with downhill/asymmetric/symmetrical vertical curve with a gradient greater than the balance gradient, the carbon emission rate is determined by the gradient and radius. The influence of the gradient on carbon emissions of vehicle on these vertical profiles was more significant than the radius. The radius is irrelevant to the carbon emission rate on the other forms of vertical profile. These results may benefit highway designers and engineers by providing guidelines regarding the environmental effects of highway vertical curve indexes.