scholarly journals Multilevel Security Network Communication Model Based on Multidimensional Control

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Lifeng Cao ◽  
Xin Lu ◽  
Zhensheng Gao ◽  
Mengda Han ◽  
Xuehui Du

To solve the problems associated with the application of multilevel security to actual networks, such as flexibility, availability, security, and secure communication, this study proposes a multilevel security network communication model based on multidimensional control. In the model, access control is retained on the basis of security labels. In addition, relational restraints among protection domains, credibility degree restraints of subjects on security attributes, aggregation inference control restraints, and secure tunnel control restraints are introduced and applied. Thus, secure information exchange within a multilevel security network information system is ensured. Moreover, using this model, multilevel security virtual networks with logical and independent characteristics can be built to accomplish secure interconnection and communication between nonequivalent members, thereby reducing the probability of information leakage. Finally, the security of the model is confirmed by applying the nontransitive, noninterference theory, and the typical application of the model in actual networks is described.

2011 ◽  
Vol 97-98 ◽  
pp. 787-793 ◽  
Author(s):  
Shen Hua Yang ◽  
Guo Quan Chen ◽  
Xing Hua Wang ◽  
Yue Bin Yang

Due to the target ship in the traditional ship handling simulator have not the ability to give way to other ships automatically to avoid collision, this paper put forward a new idea that bringing the hydraulic servo platform, six degrees of freedom ship mathematical model, the actual traffic flow, researching achievement of automatic anti-collision in research of the new pattern ship handling simulator, and successfully develop the Intelligent Ship Handling Simulator(ISHS for short). The paper focuse on the research on the network communication model of ISHS. We took the entire simulator system as three relatively independent networks, proposed a framework of communication network that combined IOCP model based on TCP with blocking model based on UDP, and gave the communication process and protocols of system. Test results indicate that this is an effective way to improve the ownship capacity of ship handling simulator and meet the need of multi-ownship configuration of desktop system of ship handling simulator.


Author(s):  
Dong Liu ◽  
Li Zhang ◽  
Yunsheng Fu ◽  
Chunrui Zhang ◽  
Mingyong Yin ◽  
...  

2015 ◽  
Vol 3 (1) ◽  
pp. 119-126 ◽  
Author(s):  
Hong Wen ◽  
Jie Tang ◽  
Jinsong Wu ◽  
Huanhuan Song ◽  
Tingyong Wu ◽  
...  

2021 ◽  
pp. 1-13 ◽  
Author(s):  
Bhabendu Kumar Mohanta ◽  
Debasish Jena ◽  
Niva Mohapatra ◽  
Somula Ramasubbareddy ◽  
Bharat S. Rawal

Smart city has come a long way since the development of emerging technology like Information and communications technology (ICT), Internet of Things (IoT), Machine Learning (ML), Block chain and Artificial Intelligence. The Intelligent Transportation System (ITS) is an important application in a rapidly growing smart city. Prediction of the automotive accident severity plays a very crucial role in the smart transportation system. The main motive behind this research is to determine the specific features which could affect vehicle accident severity. In this paper, some of the classification models, specifically Logistic Regression, Artificial Neural network, Decision Tree, K-Nearest Neighbors, and Random Forest have been implemented for predicting the accident severity. All the models have been verified, and the experimental results prove that these classification models have attained considerable accuracy. The paper also explained a secure communication architecture model for secure information exchange among all the components associated with the ITS. Finally paper implemented web base Message alert system which will be used for alert the users through smart IoT devices.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2057
Author(s):  
Yongho Ko ◽  
Jiyoon Kim ◽  
Daniel Gerbi Duguma ◽  
Philip Virgil Astillo ◽  
Ilsun You ◽  
...  

Unmanned Aerial Vehicle (UAV) plays a paramount role in various fields, such as military, aerospace, reconnaissance, agriculture, and many more. The development and implementation of these devices have become vital in terms of usability and reachability. Unfortunately, as they become widespread and their demand grows, they are becoming more and more vulnerable to several security attacks, including, but not limited to, jamming, information leakage, and spoofing. In order to cope with such attacks and security threats, a proper design of robust security protocols is indispensable. Although several pieces of research have been carried out with this regard, there are still research gaps, particularly concerning UAV-to-UAV secure communication, support for perfect forward secrecy, and provision of non-repudiation. Especially in a military scenario, it is essential to solve these gaps. In this paper, we studied the security prerequisites of the UAV communication protocol, specifically in the military setting. More importantly, a security protocol (with two sub-protocols), that serves in securing the communication between UAVs, and between a UAV and a Ground Control Station, is proposed. This protocol, apart from the common security requirements, achieves perfect forward secrecy and non-repudiation, which are essential to a secure military communication. The proposed protocol is formally and thoroughly verified by using the BAN-logic (Burrow-Abadi-Needham logic) and Scyther tool, followed by performance evaluation and implementation of the protocol on a real UAV. From the security and performance evaluation, it is indicated that the proposed protocol is superior compared to other related protocols while meeting confidentiality, integrity, mutual authentication, non-repudiation, perfect forward secrecy, perfect backward secrecy, response to DoS (Denial of Service) attacks, man-in-the-middle protection, and D2D (Drone-to-Drone) security.


Sign in / Sign up

Export Citation Format

Share Document