scholarly journals A Novel and Efficient Numerical Algorithm for Solving 2D Fredholm Integral Equations

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
H. Bin Jebreen

A novel and efficient numerical method is developed based on interpolating scaling functions to solve 2D Fredholm integral equations (FIE). Using the operational matrix of integral for interpolating scaling functions, FIE reduces to a set of algebraic equations that one can obtain an approximate solution by solving this system. The convergence analysis is investigated, and some numerical experiments confirm the accuracy and validity of the method. To show the ability of the proposed method, we compare it with others.

2021 ◽  
Vol 17 (1) ◽  
pp. 33
Author(s):  
Ayyubi Ahmad

A computational method based on modification of block pulse functions is proposed for solving numerically the linear Volterra-Fredholm integral equations. We obtain integration operational matrix of modification of block pulse functions on interval [0,T). A modification of block pulse functions and their integration operational matrix can be reduced to a linear upper triangular system. Then, the problem under study is transformed to a system of linear algebraic equations which can be used to obtain an approximate solution of  linear Volterra-Fredholm integral equations. Furthermore, the rate of convergence is  O(h) and error analysis of the proposed method are investigated. The results show that the approximate solutions have a good of efficiency and accuracy.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
H. Bin Jebreen

We develop the multiwavelet Galerkin method to solve the Volterra–Fredholm integral equations. To this end, we represent the Volterra and Fredholm operators in multiwavelet bases. Then, we reduce the problem to a linear or nonlinear system of algebraic equations. The interesting results arise in the linear type where thresholding is employed to decrease the nonzero entries of the coefficient matrix, and thus, this leads to reduction in computational efforts. The convergence analysis is investigated, and numerical experiments guarantee it. To show the applicability of the method, we compare it with other methods and it can be shown that our results are better than others.


2018 ◽  
Vol 9 (1-2) ◽  
pp. 16-27 ◽  
Author(s):  
Mohamed Abdel- Latif Ramadan ◽  
Mohamed R. Ali

In this paper, an efficient numerical method to solve a system of linear fuzzy Fredholm integral equations of the second kind based on Bernoulli wavelet method (BWM) is proposed. Bernoulli wavelets have been generated by dilation and translation of Bernoulli polynomials. The aim of this paper is to apply Bernoulli wavelet method to obtain approximate solutions of a system of linear Fredholm fuzzy integral equations. First we introduce properties of Bernoulli wavelets and Bernoulli polynomials, then we used it to transform the integral equations to the system of algebraic equations. The error estimates of the proposed method is given and compared by solving some numerical examples.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 200
Author(s):  
Ji-Huan He ◽  
Mahmoud H. Taha ◽  
Mohamed A. Ramadan ◽  
Galal M. Moatimid

The present paper employs a numerical method based on the improved block–pulse basis functions (IBPFs). This was mainly performed to resolve the Volterra–Fredholm integral equations of the second kind. Those equations are often simplified into a linear system of algebraic equations through the use of IBPFs in addition to the operational matrix of integration. Typically, the classical alterations have enhanced the time taken by the computer program to solve the system of algebraic equations. The current modification works perfectly and has improved the efficiency over the regular block–pulse basis functions (BPF). Additionally, the paper handles the uniqueness plus the convergence theorems of the solution. Numerical examples have been presented to illustrate the efficiency as well as the accuracy of the method. Furthermore, tables and graphs are used to show and confirm how the method is highly efficient.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jiao Wang

Purpose This paper aims to propose an efficient and convenient numerical algorithm for two-dimensional nonlinear Volterra-Fredholm integral equations and fractional integro-differential equations (of Hammerstein and mixed types). Design/methodology/approach The main idea of the presented algorithm is to combine Bernoulli polynomials approximation with Caputo fractional derivative and numerical integral transformation to reduce the studied two-dimensional nonlinear Volterra-Fredholm integral equations and fractional integro-differential equations to easily solved algebraic equations. Findings Without considering the integral operational matrix, this algorithm will adopt straightforward discrete data integral transformation, which can do good work to less computation and high precision. Besides, combining the convenient fractional differential operator of Bernoulli basis polynomials with the least-squares method, numerical solutions of the studied equations can be obtained quickly. Illustrative examples are given to show that the proposed technique has better precision than other numerical methods. Originality/value The proposed algorithm is efficient for the considered two-dimensional nonlinear Volterra-Fredholm integral equations and fractional integro-differential equations. As its convenience, the computation of numerical solutions is time-saving and more accurate.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
S. Mashayekhi ◽  
M. Razzaghi ◽  
O. Tripak

A new numerical method for solving the nonlinear mixed Volterra-Fredholm integral equations is presented. This method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The operational matrices of integration and product are given. These matrices are then utilized to reduce the nonlinear mixed Volterra-Fredholm integral equations to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.


Author(s):  
J. RASHIDINIA ◽  
ALI PARSA

We developed a new numerical procedure based on the quadratic semi-orthogonal B-spline scaling functions for solving a class of nonlinear integral equations of the Hammerstein-type. Properties of the B-spline wavelet method are utilized to reduce the Hammerstein equations to some algebraic equations. The advantage of our method is that the dimension of the arising algebraic equation is 10 × 10. The operational matrix of semi-orthogonal B-spline scaling functions is sparse which is easily applicable. Error estimation of the presented method is analyzed and proved. To demonstrate the validity and applicability of the technique the method applied to some illustrative examples and the maximum absolute error in the solutions are compared with the results in existing methods.20,25,27,29


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Yao Sun ◽  
Deyue Zhang

We are concerned with the Cauchy problem connected with the Helmholtz equation. We propose a numerical method, which is based on the Helmholtz representation, for obtaining an approximate solution to the problem, and then we analyze the convergence and stability with a suitable choice of regularization method. Numerical experiments are also presented to show the effectiveness of our method.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yanying Ma ◽  
Jin Huang ◽  
Hu Li

A novel numerical method is developed for solving two-dimensional linear Fredholm integral equations of the second kind by integral mean value theorem. In the proposed algorithm, each element of the generated discrete matrix is not required to calculate integrals, and the approximate integral operator is convergent according to collectively compact theory. Convergence and error analyses of the approximate solution are provided. In addition, an algorithm is given. The reliability and efficiency of the proposed method will be illustrated by comparison with some numerical results.


2021 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Ayyubi Ahmad

A numerical method based on modified block pulse functions is proposed for solving the mixed linear Volterra-Fredholm integral equations. We obtain an integration operational matrix of modified block pulse functions on interval [0,T). A modified block pulse functions and their operational matrix of integration, the mixed linear Volterra-Fredholm integral equations can be reduced to a linear system of algebraic equations. The rate of convergence is O(h) and error analysis of the proposed method are discussed. Some examples are provided to show that the proposed method have a good degree of accuracy.


Sign in / Sign up

Export Citation Format

Share Document