scholarly journals Analysis of the Model on the Effect of Seasonal Factors on Malaria Transmission Dynamics

2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Victor Yiga ◽  
Hasifa Nampala ◽  
Julius Tumwiine

Malaria is one of the world’s most prevalent epidemics. Current control and eradication efforts are being frustrated by rapid changes in climatic factors such as temperature and rainfall. This study is aimed at assessing the impact of temperature and rainfall abundance on the intensity of malaria transmission. A human host-mosquito vector deterministic model which incorporates temperature and rainfall dependent parameters is formulated. The model is analysed for steady states and their stability. The basic reproduction number is obtained using the next-generation method. It was established that the mosquito population depends on a threshold value θ , defined as the number of mosquitoes produced by a female Anopheles mosquito throughout its lifetime, which is governed by temperature and rainfall. The conditions for the stability of the equilibrium points are investigated, and it is shown that there exists a unique endemic equilibrium which is locally and globally asymptotically stable whenever the basic reproduction number exceeds unity. Numerical simulations show that both temperature and rainfall affect the transmission dynamics of malaria; however, temperature has more influence.

Author(s):  
Temidayo Oluwafemi ◽  
Emmanuel Azuaba

Malaria continues to pose a major public health challenge, especially in developing countries, 219 million cases of malaria were estimated in 89 countries. In this paper, a mathematical model using non-linear differential equations is formulated to describe the impact of hygiene on Malaria transmission dynamics, the model is analyzed. The model is divided into seven compartments which includes five human compartments namely; Unhygienic susceptible human population, Hygienic Susceptible Human population, Unhygienic infected human population , hygienic infected human population and the Recovered Human population  and the mosquito population is subdivided into susceptible mosquitoes  and infected mosquitoes . The positivity of the solution shows that there exists a domain where the model is biologically meaningful and mathematically well-posed. The Disease-Free Equilibrium (DFE) point of the model is obtained, we compute the Basic Reproduction Number using the next generation method and established the condition for Local stability of the disease-free equilibrium, and we thereafter obtained the global stability of the disease-free equilibrium by constructing the Lyapunov function of the model system. Also, sensitivity analysis of the model system was carried out to identify the influence of the parameters on the Basic Reproduction Number, the result shows that the natural death rate of the mosquitoes is most sensitive to the basic reproduction number.


Author(s):  
Rodah Jerubet ◽  
George Kimathi ◽  
Mary Wanaina

Mycobacterium tuberculosis is the causative agent of Tuberculosis in humans [1,2]. A mathematical model that explains the transmission of Tuberculosis is developed. The model consists of four compartments; the susceptible humans, the infectious humans, the latently infected humans, and the recovered humans. We conducted an analysis of the disease-free equilibrium and endemic equilibrium points. We also computed the basic reproduction number using the next generation matrix approach. The disease-free equilibrium was found to be asymptotically stable if the reproduction number was less than one. The most sensitive parameter to the basic reproduction number was also determined using sensitivity analysis. Recruitment and contact rate are the most sensitive parameter that contributes to the basic reproduction number. Ordinary Differential Equations is used in the for­mulation of the model equations. The Tuberculosis model is analyzed in order to give a proper account of the impact of its transmission dynamics and the effect of the latent stage in TB transmission. The steady state's solution of the model is investigated. The findings showed that as more people come into contact with infectious individuals, the spread of TB would increase. The latent rate of infection below a critical value makes TB infection to persist.   However, the recovery rate of infectious individuals is an indication that the spread of the disease will reduce with time which could help curb TB transmission. 


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Yali Yang ◽  
Chenping Guo ◽  
Luju Liu ◽  
Tianhua Zhang ◽  
Weiping Liu

The statistical data of monthly pulmonary tuberculosis (TB) incidence cases from January 2004 to December 2012 show the seasonality fluctuations in Shaanxi of China. A seasonality TB epidemic model with periodic varying contact rate, reactivation rate, and disease-induced death rate is proposed to explore the impact of seasonality on the transmission dynamics of TB. Simulations show that the basic reproduction number of time-averaged autonomous systems may underestimate or overestimate infection risks in some cases, which may be up to the value of period. The basic reproduction number of the seasonality model is appropriately given, which determines the extinction and uniform persistence of TB disease. If it is less than one, then the disease-free equilibrium is globally asymptotically stable; if it is greater than one, the system at least has a positive periodic solution and the disease will persist. Moreover, numerical simulations demonstrate these theorem results.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 518
Author(s):  
Christopher Saaha Bornaa ◽  
Baba Seidu ◽  
Yakubu Ibrahim Seini

A deterministic model is proposed to describe the transmission dynamics of coronavirus infection with early interventions. Epidemiological studies have employed modeling to unravel knowledge that transformed the lives of families, communities, nations and the entire globe. The study established the stability of both disease free and endemic equilibria. Stability occurs when the reproduction number, R0, is less than unity for both disease free and endemic equilibrium points. The global stability of the disease-free equilibrium point of the model is established whenever the basic reproduction number R0 is less than or equal to unity. The reproduction number is also shown to be directly related to the transmission probability (β), rate at which latently infected individuals join the infected class (δ) and rate of recruitment (Λ). It is inversely related to natural death rate (μ), rate of early treatment (τ1), rate of hospitalization of infected individuals (θ) and Covid-induced death rate (σ). The analytical results established are confirmed by numerical simulation of the model.


2021 ◽  
Vol 4 (1) ◽  
pp. 46-64
Author(s):  
Muhammad Afief Balya ◽  
Bunga Oktaviani Dewi ◽  
Faza Indah Lestari ◽  
Gayatri Ratu ◽  
Hanna Rosuliyana ◽  
...  

In this article, we propose and analyze a mathematical model of COVID-19 transmission among a closed population, with social awareness and rapid test intervention as the control variables. For this, we have constructed the model using a compartmental system of the ordinary differential equations. Dynamical analysis regarding the existence and local stability of equilibrium points is conducted rigorously. Our analysis shows that COVID-19 will disappear from the population if the basic reproduction number is less than one, and persist if the basic reproduction number is greater than one. In addition, we have shown a trans-critical bifurcation phenomenon based on our proposed model when the basic reproduction number equals one. From the elasticity analysis, we have observed that rapid testing is more promising in reducing the basic reproduction number as compared to a media campaign to improve social awareness on COVID-19. Using the Pontryagin Maximum Principle (PMP), the characterization of our optimal control problem is derived analytically and solved numerically using the forward-backward iterative algorithm. Our cost-effectiveness analysis shows that using rapid test and media campaigns partially are the best intervention strategy to reduce the number of infected humans with the minimum cost of intervention. If the intervention is to be implemented as a single intervention, then using solely the rapid test is a more promising and low-cost option in reducing the number of infected individuals vis-a-vis a media campaign to increase social awareness as a single intervention.


Author(s):  
Kingsley Timilehin Akinfe ◽  
Adedapo Chris Loyinmi

We have considered a SEIR-SEI Vector-host mathematical model which captures malaria transmission dynamics, described and built on 7-dimensional nonlinear ordinary differential equations. We compute the basic reproduction number of the model; examine the positivity and boundedness of the model compartments in a region using well established methods viz: Cauchy’s differential theorem, Birkhoff & Rota’s theorem which verifies and reveals the well-posedness, and carrying capacity of the model respectively, the existence of the Disease-Free (DFE) and Endemic (EDE) equilibrium points were determined and examined. Using the Gaussian elimination method and the Routh-hurwitz criterion, we convey stability analyses at DFE and EDE points which indicates that the DFE (malaria-free) and the EDE (epidemic outbreak) point occurs when the basic reproduction number is less than unity (one) and greater than unity (one) respectively. We obtain a solution to the model using the Variational iteration method (VIM) (an unprecedented method) to each population compartments and verify the efficacy, reliability and validity of the proposed method by comparing the respective solutions via tables and combined plots with the computer in-built Runge-kutta-Felhberg of fourth-fifths order (RKF-45). We illustrate the combined plot profiles of each compartment in the model, showing the dynamic behavior of these compartments; then we speculate that VIM is efficient and capable to conduct analysis on Malaria models and other epidemiological models.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 518
Author(s):  
Christopher Saaha Bornaa ◽  
Baba Seidu ◽  
Yakubu Ibrahim Seini

A deterministic model is proposed to describe the transmission dynamics of coronavirus infection with early interventions. Epidemiological studies have employed modeling to unravel knowledge that transformed the lives of families, communities, nations and the entire globe. The study established the stability of both disease free and endemic equilibria. Stability occurs when the reproduction number, R0, is less than unity for both disease free and endemic equilibrium points. The global stability of the disease-free equilibrium point of the model is established whenever the basic reproduction number R0 is less than or equal to unity. The reproduction number is also shown to be directly related to the transmission probability (β), rate at which latently infected individuals join the infected class (δ) and rate of recruitment (Λ). It is inversely related to natural death rate (μ), rate of early treatment (τ1), rate of hospitalization of infected individuals (θ) and Covid-induced death rate (σ). The analytical results established are confirmed by numerical simulation of the model.


2021 ◽  
Vol 4 (2) ◽  
pp. 125-137
Author(s):  
Dipo Aldila ◽  
Arthana Islamilova ◽  
Sarbaz H.A. Khosnaw ◽  
Bevina D. Handari ◽  
Hengki Tasman

Atherosclerosis is a non-communicable disease (NCDs) which appears when the blood vessels in the human body become thick and stiff. The symptoms range from chest pain, sudden numbness in the arms or legs, temporary loss of vision in one eye, or even kidney failure, which may lead to death. Treatment in cases with severe symptoms requires surgery, in which the number of doctors or hospitals is limited in some countries, especially countries with low health levels. This article aims to propose a mathematical model to understand the impact of limited hospital resources on the success of the control program of atherosclerosis spreads. The model was constructed based on a deterministic model, where the hospitalization rate is defined as a time-dependent saturated function concerning the number of infected individuals. The existence and stability of all possible equilibrium points were shown analytically and numerically, along with the basic reproduction number. Our analysis indicates that our model may exhibit various types of bifurcation phenomena, such as forward bifurcation, backward bifurcation, or a forward bifurcation with hysteresis depending on the value of hospitalization saturation parameter and the infection rate for treated infected individuals. These phenomenon triggers a complex and tricky control program of atherosclerosis. A forward bifurcation with hysteresis auses a possible condition of having more than one stable endemic equilibrium when the basic reproduction number is larger than one, but close to one. The more significant value of hospitalization saturation rate or the infection rate for treated infected individuals increases the possibility of the stable endemic equilibrium point even though the disease-free equilibrium is stable. Furthermore, the Pontryagin Maximum Principle was used to characterize the optimal control problem for our model. Based on the results of our analysis, we conclude that atherosclerosis control interventions should prioritize prevention efforts over endemic reduction scenarios to avoid high intervention costs. In addition, the government also needs to pay great attention to the availability of hospital services for this disease to avoid the dynamic complexity of the spread of atherosclerosis in the field.


2017 ◽  
Vol 27 (11) ◽  
pp. 1750170
Author(s):  
Sandeep Sharma ◽  
Nitu Kumari

In this paper, a nonlinear deterministic model is proposed with a saturated treatment function. The expression of the basic reproduction number for the proposed model was obtained. The global dynamics of the proposed model was studied using the basic reproduction number and theory of dynamical systems. It is observed that proposed model exhibits backward bifurcation as multiple endemic equilibrium points exist when [Formula: see text]. The existence of backward bifurcation implies that making [Formula: see text] is not enough for disease eradication. This, in turn, makes it difficult to control the spread of cholera in the community. We also obtain a unique endemic equilibria when [Formula: see text]. The global stability of unique endemic equilibria is performed using the geometric approach. An extensive numerical study is performed to support our analytical results. Finally, we investigate two major cholera outbreaks, Zimbabwe (2008–09) and Haiti (2010), with the help of the present study.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md Abdul Kuddus ◽  
M. Mohiuddin ◽  
Azizur Rahman

AbstractAlthough the availability of the measles vaccine, it is still epidemic in many countries globally, including Bangladesh. Eradication of measles needs to keep the basic reproduction number less than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{R}}_{0}<1)$$ ( i . e . R 0 < 1 ) . This paper investigates a modified (SVEIR) measles compartmental model with double dose vaccination in Bangladesh to simulate the measles prevalence. We perform a dynamical analysis of the resulting system and find that the model contains two equilibrium points: a disease-free equilibrium and an endemic equilibrium. The disease will be died out if the basic reproduction number is less than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{ R}}_{0}<1)$$ ( i . e . R 0 < 1 ) , and if greater than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{R}}_{0}>1)$$ ( i . e . R 0 > 1 ) epidemic occurs. While using the Routh-Hurwitz criteria, the equilibria are found to be locally asymptotically stable under the former condition on $${\mathrm{R}}_{0}$$ R 0 . The partial rank correlation coefficients (PRCCs), a global sensitivity analysis method is used to compute $${\mathrm{R}}_{0}$$ R 0 and measles prevalence $$\left({\mathrm{I}}^{*}\right)$$ I ∗ with respect to the estimated and fitted model parameters. We found that the transmission rate $$(\upbeta )$$ ( β ) had the most significant influence on measles prevalence. Numerical simulations were carried out to commissions our analytical outcomes. These findings show that how progression rate, transmission rate and double dose vaccination rate affect the dynamics of measles prevalence. The information that we generate from this study may help government and public health professionals in making strategies to deal with the omissions of a measles outbreak and thus control and prevent an epidemic in Bangladesh.


Sign in / Sign up

Export Citation Format

Share Document