scholarly journals Peroxymonosulfate Activation on a Hybrid Material of Conjugated PVC and TiO2 Nanotubes for Enhancing Degradation of Rhodamine B under Visible Light

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
La Phan Phuong Ha ◽  
Tran Hong Huy ◽  
Pham Huu Huan ◽  
Nguyen Thi Minh Thu ◽  
Cao Minh Thi ◽  
...  

Visible-light-driven photocatalysis is a robust technology for amending the negative effect of pollutants on the environment with a minimum energy use. Herein, we describe a simple approach to producing such a photocatalyst by coupling conjugated polyvinyl chloride (cPVC) with the TiO2 nanotube (TNT) thermolysis method. By activating peroxymonosulfate (PMS) to make a cPVC/TNT/PMS system using visible light as the source, we obtain a significant enhancement in the photocatalytic performance. We show that PMS use at a concentration of 3 mM can fully degrade rhodamine B (RhB) solution at a remarkably high concentration (200 mg L-1) just in 120 min under visible light. The cPVC/TNT/PMS system also shows excellent stability in recycling tests for at least five times. Further, by confining the active species in photocatalytic reactions, we report a thorough understanding of the extent of involvement from those radicals. Our work presents a robust approach to make a high-performance, visible-light-driven photocatalyst, which can be potentially used in practice.

2020 ◽  
Vol 13 (05) ◽  
pp. 2051031
Author(s):  
Abulikemu Abulizi ◽  
Hujiabudula Maimaitizi ◽  
Dilinuer Talifu ◽  
Yalkunjan Tursun

A photocatalyst of high-performance hierarchical nitrogen-doped MoS2 (N-MoS2) microsphere was fabricated by an in situ hydrothermal method in the presence of cetyltrimethylammonium bromide (CTAB). The as-prepared N-MoS2 microsphere was self-assembled by extremely thin interleaving petals, where CTAB acts as a nucleation site for the formation of the interleaving petals due to the strong interaction between CTA+ and [Formula: see text]. N-MoS2 showed higher N2 fixation ability (101.2 [Formula: see text] mol/g(cat)h) than the non-doped MoS2 under the visible light irradiation, and the improved photocatalytic activity could be ascribed to that the doped N narrows the band gap, and the surface reflecting and scattering effect caused by the hierarchical structure enhance the light adsorption. The trapping experiment of active species was also investigated to evaluate the role of photogenerated electrons in the photocatalytic reaction process. Meanwhile, the possible mechanism for the formation and excellent photocatalytic performance of N-MoS2 microsphere were also presented.


2018 ◽  
Vol 9 ◽  
pp. 1308-1316 ◽  
Author(s):  
Shijie Li ◽  
Shiwei Hu ◽  
Wei Jiang ◽  
Yanping Liu ◽  
Yu Liu ◽  
...  

To develop efficient and stable visible-light-driven (VLD) photocatalysts for pollutant degradation, we synthesized novel heterojunction photocatalysts comprised of AgI nanoparticle-decorated Ag2WO4 nanorods via a facile method. Various characterization techniques, including XRD, SEM, TEM, EDX, and UV–vis DRS were used to investigate the morphology and optical properties of the as-prepared AgI/Ag2WO4 catalyst. With AgI acting as the cocatalyst, the resulting AgI/Ag2WO4 heterostructure shows excellent performance in degrading toxic, stable pollutants such as rhodamine B (RhB), methyl orange (MO) and para-chlorophenol (4-CP). The high performance is attributed to the enhanced visible-light absorption properties and the promoted separation efficiency of charge carriers through the formation of the heterojunction between AgI and Ag2WO4. Additionally, AgI/Ag2WO4 exhibits durable stability. The active species trapping experiment reveals that active species (O2 •− and h+) dominantly contribute to RhB degradation. The AgI/Ag2WO4 heterojunction photocatalyst characterized in this work holds great potential for remedying environmental issues due to its simple preparation method and excellent photocatalytic performance.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 788
Author(s):  
Beibei Zhang ◽  
Lu Zhang ◽  
Yulong Zhang ◽  
Chao Liu ◽  
Jiexiang Xia ◽  
...  

In this work, a simple chemical precipitation method was employed to prepare spherical-like Ag3PO4 material (IL-Ag3PO4) with exposed {111} facet in the presence of reactive ionic liquid 1-butyl-3-methylimidazole dihydrogen phosphate ([Omim]H2PO4). The crystal structure, microstructure, optical properties, and visible-light photocatalytic performance of as-prepared materials were studied in detail. The addition of ionic liquids played a crucial role in forming spherical-like morphology of IL-Ag3PO4 sample. Compared with traditional Ag3PO4 material, the intensity ratio of {222}/{200} facets in XRD pattern of IL-Ag3PO4 was significantly enhanced, indicating the main {111} facets exposed on the surface of IL-Ag3PO4 sample. The presence of exposed {111} facet was advantageous for facilitating the charge carrier transfer and separation. The light-harvesting capacity of IL-Ag3PO4 was larger than that of Ag3PO4. The photocatalytic activity of samples was evaluated by degrading rhodamine B (RhB) and p-chlorophenol (4-CP) under visible light. The photodegradation efficiencies of IL-Ag3PO4 were 1.94 and 2.45 times higher than that of Ag3PO4 for RhB and 4-CP removal, respectively, attributing to a synergy from the exposed {111} facet and enhanced photoabsorption. Based on active species capturing experiments, holes (h+), and superoxide radical (•O2−) were the main active species for visible-light-driven RhB photodegradation. This study will provide a promising prospect for designing and synthesizing ionic liquid-assisted photocatalysts with a high efficiency.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Paola Riente ◽  
Mauro Fianchini ◽  
Patricia Llanes ◽  
Miquel A. Pericàs ◽  
Timothy Noël

AbstractThe importance of discovering the true catalytically active species involved in photocatalytic systems allows for a better and more general understanding of photocatalytic processes, which eventually may help to improve their efficiency. Bi2O3 has been used as a heterogeneous photocatalyst and is able to catalyze several synthetically important visible-light-driven organic transformations. However, insight into the operative catalyst involved in the photocatalytic process is hitherto missing. Herein, we show through a combination of theoretical and experimental studies that the perceived heterogeneous photocatalysis with Bi2O3 in the presence of alkyl bromides involves a homogeneous BinBrm species, which is the true photocatalyst operative in the reaction. Hence, Bi2O3 can be regarded as a precatalyst which is slowly converted in an active homogeneous photocatalyst. This work can also be of importance to mechanistic studies involving other semiconductor-based photocatalytic processes.


Author(s):  
Esmeralda Ortiz-Zarco ◽  
Dora Solis-Casados ◽  
Luis Escobar-Alarcón ◽  
Ivan García-Orozco

2013 ◽  
Vol 17 (01n02) ◽  
pp. 135-141 ◽  
Author(s):  
Keishiro Tahara ◽  
Kumiko Mikuriya ◽  
Takahiro Masuko ◽  
Jun-ichi Kikuchi ◽  
Yoshio Hisaeda

The visible-light-driven dechlorination of 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) was carried out in the presence of a hydrophobic vitamin B12 , heptamethyl cobyrinate perchlorate and Rhodamine B . DDT was successfully dechlorinated to form 1,1-bis(4-chlorophenyl)-2,2-dichloroethane (DDD) as the mono-dechlorinated product upon visible light irradiation with a tungsten lamp (λ > 440 nm). Upon prolonged visible light irradiation to DDT, DDMU (1-chloro-2,2-bis(4-chlorophenyl)ethylene), DDMS (1-chloro-2,2-bis(4-chlorophenyl)ethane) and DCS (trans-4,4′-dichlorostilbene) were obtained as the di- and tri-dechlorinated products. The use of the photostable organic sensitizer enabled prolonged photocatalysis via a noble-metal-free process. The vitamin B12 derivative was replaced by an imine/oxime-type cobalt complex although the cobalt complex system showed a lower catalytic activity than the B12 derivative system. The dechlorination mechanism in the B12 -Rhodamin B system was investigated by various methods such as UV-vis absorption and fluorescence quenching.


2021 ◽  
Vol 10 (2) ◽  
pp. 59-63
Author(s):  
Hai Pham Viet ◽  
Anh Dao Thi Ngoc ◽  
Viet Nguyen Minh ◽  
Ha Tran Thi Viet ◽  
Dang Do Van ◽  
...  

In this study, direct Z–scheme heterostructure CoWO4/g-C3N4 was synthesized by a facile hydrothermal method. The structural, morphological properties of the prepared samples were characterised by XRD, SEM, UV–Vis and PL measurements. The as-obtained heterostructure CoWO4/g-C3N4 exhibited enhanced photocatalytic activities toward the degradation of Rhodamine B under visible light irradiation with 92% Rhodamine B removal after 80 minutes irritation, which exceeded pristine g-C3N4 and CoWO4. The enhanced photocatalytic performance ascribed to interfacial contact between g-C3N4 and CoWO4, thus further inhibiting the recombination of photogenerated electron/hole pairs. It is anticipated that the construction of Z–scheme heterostructure CoWO4/g-C3N4 is an effective strategy to develop high-performance photocatalysts for the degradation of organic pollutants in water.


2018 ◽  
Vol 39 (7) ◽  
pp. 847-852
Author(s):  
Xiang-Feng Wu ◽  
Yi-Jin Wang ◽  
Zuo-Lin Cao ◽  
Yan-Mei Feng ◽  
Hui Li ◽  
...  

2014 ◽  
Vol 25 (4) ◽  
pp. 1292-1303 ◽  
Author(s):  
Gangqiang Zhu ◽  
Mirabbos Hojamberdiev ◽  
Ken-ichi Katsumata ◽  
Nobuhiro Matsushita ◽  
Kiyoshi Okada ◽  
...  

2020 ◽  
Vol 10 (7) ◽  
pp. 2365-2374 ◽  
Author(s):  
Muhammad Rafique ◽  
Muhammad Hamza ◽  
Muhammad Shakil ◽  
Muneeb Irshad ◽  
Muhammad Bilal Tahir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document