scholarly journals Pythagorean Fuzzy Soft Einstein Ordered Weighted Average Operator in Sustainable Supplier Selection Problem

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Rana Muhammad Zulqarnain ◽  
Imran Siddique ◽  
Shahzad Ahmad ◽  
Aiyared Iampan ◽  
Goran Jovanov ◽  
...  

Pythagorean fuzzy soft set (PFSS) is the most influential and operative extension of the Pythagorean fuzzy set (PFS), which contracts with the parametrized standards of the substitutes. It is also a generalized form of the intuitionistic fuzzy soft set (IFSS) and delivers a well and accurate estimation in the decision-making (DM) procedure. The primary purpose is to prolong and propose ideas related to Einstein’s ordered weighted aggregation operator from fuzzy to PFSS, comforting the condition that the sum of the degrees of membership function and nonmembership function is less than one and the sum of the squares of the degree of membership function and nonmembership function is less than one. We present a novel Pythagorean fuzzy soft Einstein ordered weighted averaging (PFSEOWA) operator based on operational laws for Pythagorean fuzzy soft numbers. Furthermore, some essential properties such as idempotency, boundedness, and homogeneity for the proposed operator have been presented in detail. The choice of a sustainable supplier is also examined as an essential part of sustainable supply chain management (SSCM) and is considered a crucial multiattribute group decision-making (MAGDM) issue. In some MAGDM problems, the relationship between alternatives and uncertain environments will be the main reason for deficient consequences. We have presented a novel aggregation operator for PFSS information to choose sustainable suppliers to cope with those complex issues. The Pythagorean fuzzy soft number (PFSN) helps to represent the obscure information in such real-world perspectives. The priority relationship of PFSS details is beneficial in coping with SSCM. The proposed method’s effectiveness is proved by comparing advantages, effectiveness, and flexibility among the existing studies.

2014 ◽  
Vol 11 (2) ◽  
pp. 839-857 ◽  
Author(s):  
Zeng Shouzhen ◽  
Wang Qifeng ◽  
José Merigó ◽  
Pan Tiejun

We present the induced intuitionistic fuzzy ordered weighted averaging-weighted average (I-IFOWAWA) operator. It is a new aggregation operator that uses the intuitionistic fuzzy weighted average (IFWA) and the induced intuitionistic fuzzy ordered weighted averaging (I-IFOWA) operator in the same formulation. We study some of its main properties and we have seen that it has a lot of particular cases such as the IFWA and the intuitionistic fuzzy ordered weighted averaging (IFOWA) operator. We also study its applicability in a decision-making problem concerning strategic selection of investments. We see that depending on the particular type of I-IFOWAWA operator used, the results may lead to different decisions.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 753 ◽  
Author(s):  
Khizar Hayat ◽  
Muhammad Ali ◽  
Bing-Yuan Cao ◽  
Faruk Karaaslan ◽  
Xiao-Peng Yang

In this paper, the existing definition of the group-based generalized intuitionistic fuzzy soft set is clarified and redefined by merging intuitionistic fuzzy soft set over the set of alternatives and a group of intuitionistic fuzzy sets on parameters. In this prospect, two new subsets of the group-based generalized intuitionistic fuzzy soft set are proposed and several operations are contemplated. The two new aggregation operators called generalized group-based weighted averaging and generalized group-based weighted geometric operator are introduced. The related properties of proposed operators are discussed. The recent research is emerging on multi-attribute decision making methods based on soft sets, intuitionistic fuzzy soft sets, and generalized intuitionistic fuzzy soft sets. An algorithm is structured and two case studies of multi-attribute decision makings are considered using proposed operators. Further, we provide the comparison and advantages of the proposed method, which give superiorities over recent major existing methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaoguo Chen ◽  
Hong Du ◽  
Yue Yang

A concept of interval-valued triangular fuzzy soft set is presented, and some operations of “AND,” “OR,” intersection, union and complement, and so forth are defined. Then some relative properties are discussed and several conclusions are drawn. A dynamic decision making model is built based on the definition of interval-valued triangular fuzzy soft set, in which period weight is determined by the exponential decay method. The arithmetic weighted average operator of interval-valued triangular fuzzy soft set is given by the aggregating thought, thereby aggregating interval-valued triangular fuzzy soft sets of different time-series into a collective interval-valued triangular fuzzy soft set. The formulas of selection and decision values of different objects are given; therefore the optimal decision making is achieved according to the decision values. Finally, the steps of this method are concluded, and one example is given to explain the application of the method.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 688
Author(s):  
Rana Muhammad Zulqarnain ◽  
Imran Siddique ◽  
Rifaqat Ali ◽  
Dragan Pamucar ◽  
Dragan Marinkovic ◽  
...  

In this paper, we investigate the multi-criteria decision-making complications under intuitionistic fuzzy hypersoft set (IFHSS) information. The IFHSS is a proper extension of the intuitionistic fuzzy soft set (IFSS) which discusses the parametrization of multi-sub attributes of considered parameters, and accommodates more hesitation comparative to IFSS utilizing the multi sub-attributes of the considered parameters. The main objective of this research is to introduce operational laws for intuitionistic fuzzy hypersoft numbers (IFHSNs). Additionally, based on developed operational laws two aggregation operators (AOs), i.e., intuitionistic fuzzy hypersoft weighted average (IFHSWA) and intuitionistic fuzzy hypersoft weighted geometric (IFHSWG), operators have been presented with their fundamental properties. Furthermore, a decision-making approach has been established utilizing our developed aggregation operators (AOs). Through the established approach, a technique for solving decision-making (DM) complications is proposed to select sustainable suppliers in sustainable supply chain management (SSCM). Moreover, a numerical description is presented to ensure the validity and usability of the proposed technique in the DM process. The practicality, effectivity, and flexibility of the current approach are demonstrated through comparative analysis with the assistance of some prevailing studies.


2021 ◽  
pp. 1-21
Author(s):  
Rana Muhammad Zulqarnain ◽  
Xiao Long Xin ◽  
Harish Garg ◽  
Rifaqat Ali

In this article, we investigate the multi-criteria decision-making complications under Pythagorean fuzzy soft information. The Pythagorean fuzzy soft set (PFSS) is a proper extension of the Pythagorean fuzzy set (PFS) which discusses the parametrization of the attributes of alternatives. It is also a generalization of the intuitionistic fuzzy soft set (IFSS). The PFSS is used to precisely evaluate the deficiencies, anxiety, and hesitation in decision-making (DM). The most essential determination of the current study is to advance some operational laws along with aggregation operators (AOs) within the Pythagorean fuzzy soft environs such as Pythagorean fuzzy soft interaction weighted average (PFSIWA) and Pythagorean fuzzy soft interaction weighted geometric (PFSIWG) operators with their desirable features. Furthermore, a DM technique has been established based on the developed operators to solve multi-criteria decision-making (MCDM) problems. Moreover, an application of the projected method is presented for the selection of an effective hand sanitizer during the COVID-19 pandemic. A comparative analysis with the merits, effectivity, tractability, along with some available research deduces the effectiveness of this approach.


2021 ◽  
pp. 1-16
Author(s):  
Muhammad Akram ◽  
Gulfam Shahzadi ◽  
Muhammad Arif Butt ◽  
Faruk Karaaslan

Soft set (SfS) theory is a basic tool to handle vague information with parameterized study during the process as compared to fuzzy as well as q-rung orthopair fuzzy theory. This research article is devoted to establish some general aggregation operators (AOs), based on Yager’s norm operations, to cumulate the q-rung orthopair fuzzy soft data in decision making environments. In this article, the valuable properties of q-rung orthopair fuzzy soft set (q - ROFSfS) are merged with the Yager operator to propose four new operators, namely, q-rung orthopair fuzzy soft Yager weighted average (q - ROFSfYWA), q-rung orthopair fuzzy soft Yager ordered weighted average (q - ROFSfYOWA), q-rung orthopair fuzzy soft Yager weighted geometric (q - ROFSfYWG) and q-rung orthopair fuzzy soft Yager ordered weighted geometric (q - ROFSfYOWG) operators. The dominant properties of proposed operators are elaborated. To emphasize the importance of proposed operators, a multi-attribute group decision making (MAGDM) strategy is presented along with an application in medical diagnosis. The comparative study shows superiorities of the proposed operators and limitations of the existing operators. The comparison with Pythagorean fuzzy TOPSIS (PF-TOSIS) method shows that PF-TOPSIS method cannot deal with data involving parametric study but developed operators have the ability to deal with decision making problems using parameterized information.


2013 ◽  
Vol 37 (7) ◽  
pp. 4915-4923 ◽  
Author(s):  
Yong Yang ◽  
Xia Tan ◽  
Congcong Meng

2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Shawkat Alkhazaleh ◽  
Abdul Razak Salleh

We introduce the concept of generalised interval-valued fuzzy soft set and its operations and study some of their properties. We give applications of this theory in solving a decision making problem. We also introduce a similarity measure of two generalised interval-valued fuzzy soft sets and discuss its application in a medical diagnosis problem: fuzzy set; soft set; fuzzy soft set; generalised fuzzy soft set; generalised interval-valued fuzzy soft set; interval-valued fuzzy set; interval-valued fuzzy soft set.


2020 ◽  
Vol 30 (1) ◽  
pp. 59-70
Author(s):  
Shehu Mohammed ◽  
Akbar Azam

The notion of soft set theory was initiated as a general mathematical tool for handling ambiguities. Decision making is viewed as a cognitive-based human activity for selecting the best alternative. In the present time, decision making techniques based on fuzzy soft sets have gained enormous attentions. On this development, this paper proposes a new algorithm for decision making in fuzzy soft set environment by hybridizing some existing techniques. The first novelty is the idea of absolute scores. The second concerns the concept of priority table in group decision making problems. The advantages of our approach herein are stronger power of objects discrimination and a well-determined inference.


Sign in / Sign up

Export Citation Format

Share Document