Pythagorean Fuzzy Soft Einstein Ordered Weighted Average Operator in Sustainable Supplier Selection Problem
Pythagorean fuzzy soft set (PFSS) is the most influential and operative extension of the Pythagorean fuzzy set (PFS), which contracts with the parametrized standards of the substitutes. It is also a generalized form of the intuitionistic fuzzy soft set (IFSS) and delivers a well and accurate estimation in the decision-making (DM) procedure. The primary purpose is to prolong and propose ideas related to Einstein’s ordered weighted aggregation operator from fuzzy to PFSS, comforting the condition that the sum of the degrees of membership function and nonmembership function is less than one and the sum of the squares of the degree of membership function and nonmembership function is less than one. We present a novel Pythagorean fuzzy soft Einstein ordered weighted averaging (PFSEOWA) operator based on operational laws for Pythagorean fuzzy soft numbers. Furthermore, some essential properties such as idempotency, boundedness, and homogeneity for the proposed operator have been presented in detail. The choice of a sustainable supplier is also examined as an essential part of sustainable supply chain management (SSCM) and is considered a crucial multiattribute group decision-making (MAGDM) issue. In some MAGDM problems, the relationship between alternatives and uncertain environments will be the main reason for deficient consequences. We have presented a novel aggregation operator for PFSS information to choose sustainable suppliers to cope with those complex issues. The Pythagorean fuzzy soft number (PFSN) helps to represent the obscure information in such real-world perspectives. The priority relationship of PFSS details is beneficial in coping with SSCM. The proposed method’s effectiveness is proved by comparing advantages, effectiveness, and flexibility among the existing studies.