scholarly journals The Interval-Valued Triangular Fuzzy Soft Set and Its Method of Dynamic Decision Making

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaoguo Chen ◽  
Hong Du ◽  
Yue Yang

A concept of interval-valued triangular fuzzy soft set is presented, and some operations of “AND,” “OR,” intersection, union and complement, and so forth are defined. Then some relative properties are discussed and several conclusions are drawn. A dynamic decision making model is built based on the definition of interval-valued triangular fuzzy soft set, in which period weight is determined by the exponential decay method. The arithmetic weighted average operator of interval-valued triangular fuzzy soft set is given by the aggregating thought, thereby aggregating interval-valued triangular fuzzy soft sets of different time-series into a collective interval-valued triangular fuzzy soft set. The formulas of selection and decision values of different objects are given; therefore the optimal decision making is achieved according to the decision values. Finally, the steps of this method are concluded, and one example is given to explain the application of the method.

2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Shawkat Alkhazaleh ◽  
Abdul Razak Salleh

We introduce the concept of generalised interval-valued fuzzy soft set and its operations and study some of their properties. We give applications of this theory in solving a decision making problem. We also introduce a similarity measure of two generalised interval-valued fuzzy soft sets and discuss its application in a medical diagnosis problem: fuzzy set; soft set; fuzzy soft set; generalised fuzzy soft set; generalised interval-valued fuzzy soft set; interval-valued fuzzy set; interval-valued fuzzy soft set.


2018 ◽  
Vol 7 (2) ◽  
pp. 44-61 ◽  
Author(s):  
T. R. Sooraj ◽  
B. K. Tripathy

As seed selection is a challenging task due to the presence of hundreds of varieties of seeds of each kind, some homework is necessary for selecting suitable seeds as new varieties and kinds of seeds are introduced in the market every year having their own strengths and weaknesses. The complexities involved in the characteristics in the form of parameters results in uncertainties and as a result some uncertainty based model or hybrid models of more than is required to model the scenario and come out with a decision. Soft sets have enough of parameterization tools to support and hence is the most suitable one for such a study. However, as hybrid models are more efficient, the authors select a model called the interval valued fuzzy soft set (IVFSS) and propose a decision-making algorithm for the selection of seeds. A real database of seeds is used for experimental verification of the efficiency of the algorithm. This is the first attempt for such a study. The use of signed priorities and intervals for the membership of values for entities makes the study more efficient and realistic.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Haidong Zhang ◽  
Lianglin Xiong ◽  
Weiyuan Ma

By combining the interval-valued hesitant fuzzy set and soft set models, the purpose of this paper is to introduce the concept of interval-valued hesitant fuzzy soft sets. Further, some operations on the interval-valued hesitant fuzzy soft sets are investigated, such as complement, “AND,” “OR,” ring sum, and ring product operations. Then, by means of reduct interval-valued fuzzy soft sets and level hesitant fuzzy soft sets, we present an adjustable approach to interval-valued hesitant fuzzy soft sets based on decision making and some numerical examples are provided to illustrate the developed approach. Finally, the weighted interval-valued hesitant fuzzy soft set is also introduced and its application in decision making problem is shown.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Xiaoqiang Zhou ◽  
Qingguo Li ◽  
Lankun Guo

Soft set theory, initiated by Molodtsov, can be used as a new mathematical tool for dealing with imprecise, vague, and uncertain problems. In this paper, the concepts of two types of generalised interval-valued fuzzy soft set are proposed and their basic properties are studied. The lattice structures of generalised interval-valued fuzzy soft set are also discussed. Furthermore, an application of the new approach in decision making based on generalised interval-valued fuzzy soft set is developed.


2018 ◽  
Vol 7 (3) ◽  
pp. 99-117 ◽  
Author(s):  
B. K. Tripathy ◽  
T. R. Sooraj ◽  
R. K. Mohanty ◽  
Abhilash Panigrahi

This article describes how the lack of adequate parametrization in some of the earlier uncertainty based models like fuzzy sets, rough sets motivated Molodtsov to introduce a new model in soft set. A suitable combination of individual models leads to hybrid models, which are more efficient than their individual components. So, the authors find the introduction of many hybrid models of soft sets, like the fuzzy soft set (FSS), intuitionistic fuzzy soft sets (IFSS), interval valued fuzzy soft set (IVFSS) and the interval valued intuitionistic fuzzy soft set (IVIFSS). Following the characteristic function approach to define soft sets introduced by Tripathy et al., they re-define IVIFSS in this article. One of the most attractive applications of soft set theory and its hybrid models has been decision making in the form of individual decision making or group decision making. Here, the authors propose a group decision making algorithm using IVIFSS, which generalises many of our earlier algorithms. They compute its complexity and establish the computation experimentally with graphical illustrations.


2017 ◽  
Vol 7 (1.3) ◽  
pp. 52 ◽  
Author(s):  
Ar. Pandipriya ◽  
J. Vimala ◽  
S. Sabeena Begam

In 2015, Haidong Zhang enhanced the idea of Hesitant Fuzzy Sets and Soft Sets into Interval-Valued Hesitant Fuzzy Soft Sets along with its properties. In this present work, we establish the Lattice Ordered Interval-Valued Hesitant Fuzzy Soft Sets and examined its vital properties with examples. Eventually the application of Lattice Ordered Interval-Valued Hesitant Fuzzy Soft Set to decision making problem is established by means of elegant algorithm.


2013 ◽  
Vol 336-338 ◽  
pp. 2288-2302 ◽  
Author(s):  
Yong Yang ◽  
Cong Cong Meng

Soft set theory, initiated by Molodtsov, can be used as a new mathematical tool for dealing with imprecise, vague, and uncertain problems. In this paper, the concepts of two types of possibil­ity interval-valued fuzzy soft sets are proposed. Their operations and basic properties are studied which are subset, equal, relative complement, union, intersection, restricted union, extended intersection, “AND”, “OR” and De Morgan Laws. Furthermore, an application of the new approach in decision making based on possibility interval-valued fuzzy soft set is illustrated.


2021 ◽  
pp. 1-12
Author(s):  
Admi Nazra ◽  
Yudiantri Asdi ◽  
Sisri Wahyuni ◽  
Hafizah Ramadhani ◽  
Zulvera

This paper aims to extend the Interval-valued Intuitionistic Hesitant Fuzzy Set to a Generalized Interval-valued Hesitant Intuitionistic Fuzzy Soft Set (GIVHIFSS). Definition of a GIVHIFSS and some of their operations are defined, and some of their properties are studied. In these GIVHIFSSs, the authors have defined complement, null, and absolute. Soft binary operations like operations union, intersection, a subset are also defined. Here is also verified De Morgan’s laws and the algebraic structure of GIVHIFSSs. Finally, by using the comparison table, a different approach to GIVHIFSS based decision-making is presented.


2020 ◽  
Vol 30 (1) ◽  
pp. 59-70
Author(s):  
Shehu Mohammed ◽  
Akbar Azam

The notion of soft set theory was initiated as a general mathematical tool for handling ambiguities. Decision making is viewed as a cognitive-based human activity for selecting the best alternative. In the present time, decision making techniques based on fuzzy soft sets have gained enormous attentions. On this development, this paper proposes a new algorithm for decision making in fuzzy soft set environment by hybridizing some existing techniques. The first novelty is the idea of absolute scores. The second concerns the concept of priority table in group decision making problems. The advantages of our approach herein are stronger power of objects discrimination and a well-determined inference.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Rana Muhammad Zulqarnain ◽  
Imran Siddique ◽  
Shahzad Ahmad ◽  
Aiyared Iampan ◽  
Goran Jovanov ◽  
...  

Pythagorean fuzzy soft set (PFSS) is the most influential and operative extension of the Pythagorean fuzzy set (PFS), which contracts with the parametrized standards of the substitutes. It is also a generalized form of the intuitionistic fuzzy soft set (IFSS) and delivers a well and accurate estimation in the decision-making (DM) procedure. The primary purpose is to prolong and propose ideas related to Einstein’s ordered weighted aggregation operator from fuzzy to PFSS, comforting the condition that the sum of the degrees of membership function and nonmembership function is less than one and the sum of the squares of the degree of membership function and nonmembership function is less than one. We present a novel Pythagorean fuzzy soft Einstein ordered weighted averaging (PFSEOWA) operator based on operational laws for Pythagorean fuzzy soft numbers. Furthermore, some essential properties such as idempotency, boundedness, and homogeneity for the proposed operator have been presented in detail. The choice of a sustainable supplier is also examined as an essential part of sustainable supply chain management (SSCM) and is considered a crucial multiattribute group decision-making (MAGDM) issue. In some MAGDM problems, the relationship between alternatives and uncertain environments will be the main reason for deficient consequences. We have presented a novel aggregation operator for PFSS information to choose sustainable suppliers to cope with those complex issues. The Pythagorean fuzzy soft number (PFSN) helps to represent the obscure information in such real-world perspectives. The priority relationship of PFSS details is beneficial in coping with SSCM. The proposed method’s effectiveness is proved by comparing advantages, effectiveness, and flexibility among the existing studies.


Sign in / Sign up

Export Citation Format

Share Document