scholarly journals Global Exponential Stability and Periodicity of Nonautonomous Impulsive Neural Networks with Time-Varying Delays and Reaction-Diffusion Terms

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Weiyi Hu ◽  
Kelin Li

In this paper, we investigate the global exponential stability and periodicity of nonautonomous cellular neural networks with reaction-diffusion, impulses, and time-varying delays. By establishing a new differential inequality for nonautonomous systems, using the properties of M-matrix and inequality techniques, some new sufficient conditions for the global exponential stability of the system are obtained. Moreover, sufficient conditions for the periodic solutions of the system are obtained by using the Poincare mapping and the fixed point theory. The validity and superiority of the main results are verified by numerical examples and simulations.

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Tianxiang Yao ◽  
Xianghong Lai

This work addresses the stability study for stochastic cellular neural networks with time-varying delays. By utilizing the new research technique of the fixed point theory, we find some new and concise sufficient conditions ensuring the existence and uniqueness as well as mean-square global exponential stability of the solution. The presented algebraic stability criteria are easily checked and do not require the differentiability of delays. The paper is finally ended with an example to show the effectiveness of the obtained results.


2008 ◽  
Vol 2008 ◽  
pp. 1-14 ◽  
Author(s):  
Xinsong Yang

By using the coincidence degree theorem and differential inequality techniques, sufficient conditions are obtained for the existence and global exponential stability of periodic solutions for general neural networks with time-varying (including bounded and unbounded) delays. Some known results are improved and some new results are obtained. An example is employed to illustrate our feasible results.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Qi Luo ◽  
Xinjie Miao ◽  
Qian Wei ◽  
Zhengxin Zhou

This work is devoted to investigating the stability of impulsive cellular neural networks with time-varying and distributed delays. We use the new method of fixed point theory to obtain some new and concise sufficient conditions to ensure the existence and uniqueness of solution and the global exponential stability of trivial equilibrium. The presented algebraic criteria are easily checked and do not require the differentiability of delays.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaohui Xu ◽  
Jiye Zhang ◽  
Quan Xu ◽  
Zilong Chen ◽  
Weifan Zheng

This paper studies the global exponential stability for a class of impulsive disturbance complex-valued Cohen-Grossberg neural networks with both time-varying delays and continuously distributed delays. Firstly, the existence and uniqueness of the equilibrium point of the system are analyzed by using the corresponding property of M-matrix and the theorem of homeomorphism mapping. Secondly, the global exponential stability of the equilibrium point of the system is studied by applying the vector Lyapunov function method and the mathematical induction method. The established sufficient conditions show the effects of both delays and impulsive strength on the exponential convergence rate. The obtained results in this paper are with a lower level of conservatism in comparison with some existing ones. Finally, three numerical examples with simulation results are given to illustrate the correctness of the proposed results.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Guowei Yang ◽  
Yonggui Kao ◽  
Changhong Wang

This paper considers dynamical behaviors of a class of fuzzy impulsive reaction-diffusion delayed cellular neural networks (FIRDDCNNs) with time-varying periodic self-inhibitions, interconnection weights, and inputs. By using delay differential inequality,M-matrix theory, and analytic methods, some new sufficient conditions ensuring global exponential stability of the periodic FIRDDCNN model with Neumann boundary conditions are established, and the exponential convergence rate index is estimated. The differentiability of the time-varying delays is not needed. An example is presented to demonstrate the efficiency and effectiveness of the obtained results.


2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
Xinsong Yang ◽  
Jinde Cao ◽  
Chuangxia Huang ◽  
Yao Long

By using the Leray-Schauder fixed point theorem and differential inequality techniques, several new sufficient conditions are obtained for the existence and global exponential stability of almost periodic solutions for shunting inhibitory cellular neural networks with discrete and distributed delays. The model in this paper possesses two characters: nonlinear behaved functions and all coefficients are time varying. Hence, our model is general and applicable to many known models. Moreover, our main results are also general and can be easily deduced to many simple cases, including some existing results. An example and its simulation are employed to illustrate our feasible results.


Sign in / Sign up

Export Citation Format

Share Document