scholarly journals Experimental and Numerical Simulation Study of Hydraulic Fracture Propagation during Coalbed Methane Development

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qingshan Ren ◽  
Yaodong Jiang ◽  
Pengpeng Wang ◽  
Guangjie Wu ◽  
Nima Noraei Danesh

The extraction of low-permeability coalbed methane (CBM) has the dual significance of energy utilization and safe mining. Understanding hydraulic fracturing mechanism is vital to successful development of CBM. Therefore, it is important to improve the law of hydraulic fracture propagation in coal and rigorously study the influencing factors. In this paper, laboratory experiments and numerical simulation methods were used to investigate the hydraulic fracture propagation law of coal in coalbed methane reservoir with natural fractures. The results show that the maximum and minimum horizontal in situ stress and the difference in stress significantly affect the direction of crack propagation. The elastic modulus of coal, the mechanical properties of natural fractures, and the injection rate can affect the fracture length, fracture width, and the amount of fracturing fluid injected. To ensure the effectiveness of hydraulic fracturing, a reservoir environment with a certain horizontal stress difference under specific reservoir conditions can ensure the increase of fractured reservoir and the controllability of fracture expansion direction. In order to increase the volume of fractured reservoir and fracture length, the pumping speed of fracturing fluid should not be too high. The existence of stress shadow effect causes the hydraulic fracture to propagate along the main fracture track, where the branch fracture cannot extend too far. Complex fractures are the main hydraulic fracture typology in coalbed methane reservoir with natural fractures. The results can provide a benchmark for optimal design of hydraulic fracturing in coalbed methane reservoirs.

Author(s):  
Minhui Qi ◽  
Mingzhong Li ◽  
Yanchao Li ◽  
Tiankui Guo ◽  
Song Gao

Hydraulic fracturing is an economically effective technology developing the glutenite reservoirs, which have far stronger heterogeneity than the conventional sandstone reservoir. According to the field production experience of Shengli Oilfield, horizontal-well fracturing is more likely to develop a complex fractured network, which improves the stimulated volume of reservoir effectively. But the clear mechanism of horizontal-well hydraulic fracture propagation in the glutenite reservoirs is still not obtained, thus it is difficult to effectively carry out the design of fracturing plan. Based on the characteristics of the glutenite reservoirs, a coupled Flow-Stress-Damage (FSD) model of hydraulic fracture propagation is established. The numerical simulation of fracturing expansion in the horizontal well of the glutenite reservoir is conducted. It is shown that a square mesh-like fracture network is developed near the horizontal well in the reservoir with lower stress difference, in which fracture is more prone to propagate along the direction of the minimum principal stress as well. High fracturing fluids injection displacement and high fracturing fluid viscosity lead to the rise of static pressure of the fracture, which results in the rise of fracture complexity, and greater probability to deflect when encountering gravels. As the perforation density increases, the micro-fractures generated at each perforation gather together faster, and the range of the stimulated reservoir is also relatively large. For reservoirs with high gravel content, the complexity of fracture network and the effect of fracture communication are obviously increased, and the range of fracture deflection is relatively large. In the case of the same gravel distribution, the higher the tensile strength of the gravel, the greater fracture tortuosity and diversion was observed. In this paper, a simulation method of horizontal well fracture network propagation in the reservoirs is introduced, and the result provides the theoretical support for fracture network morphology prediction and plan design of hydraulic fracturing in the glutenite reservoir.


2015 ◽  
Vol 52 (7) ◽  
pp. 926-946 ◽  
Author(s):  
N. Zangeneh ◽  
E. Eberhardt ◽  
R.M. Bustin

Hydraulic fracturing is the primary means for enhancing rock mass permeability and improving well productivity in tight reservoir rocks. Significant advances have been made in hydraulic fracturing theory and the development of design simulators; however, these generally rely on continuum treatments of the rock mass. In situ, the geological conditions are much more complex, complicated by the presence of natural fractures and planes of weakness such as bedding planes, joints, and faults. Further complexity arises from the influence of the in situ stress field, which has its own heterogeneity. Together, these factors may either enhance or diminish the effectiveness of the hydraulic fracturing treatment and subsequent hydrocarbon production. Results are presented here from a series of two-dimensional (2-D) numerical experiments investigating the influence of natural fractures on the modeling of hydraulic fracture propagation. Distinct-element techniques applying a transient, coupled hydromechanical solution are evaluated with respect to their ability to account for both tensile rupture of intact rock in response to fluid injection and shear and dilation along existing joints. A Voronoi tessellation scheme is used to add the necessary degrees of freedom to model the propagation path of a hydraulically driven fracture. The analysis is carried out for several geometrical variants related to hypothetical geological scenarios simulating a naturally fractured shale gas reservoir. The results show that key interactions develop with the natural fractures that influence the size, orientation, and path of the hydraulic fracture as well as the stimulated volume. These interactions may also decrease the size and effectiveness of the stimulation by diverting the injected fluid and proppant and by limiting the extent of the hydraulic fracture.


2012 ◽  
Vol 482-484 ◽  
pp. 1668-1671 ◽  
Author(s):  
Zhi Gang Yuan ◽  
Hong Tu Wang ◽  
Nian Ping Liu

Based on the coal-rock mass deformation model, hydraulic pressure descent model in fracture, fracture propagation model and its growth criterion, the mathematical model of hydraulic fracturing of low permeable coal-rock mass is established, and the influencing factors such as injection pressure, elastic modulus of coal-rock mass and in-situ stress, which affect the characteristics of hydraulic fracture propagation, are studied using the ANSYS software. The results show that fracture length presents a linear increase and widest width increases as an exponent function with the increase of injection pressure, and the ability of making fracture width is greater than fracture length during late fracturing; besides, with the increase of Young’s modulus of coal-rock mass and least horizontal stress, fracture length and widest width decrease, which are independent of maximum horizontal stress. The obtained conclusions provide a guiding role for the optimization of operation parameters of field hydraulic fracturing of low permeable coal-rock.


Sign in / Sign up

Export Citation Format

Share Document