scholarly journals VLSI Implementation of Green Computing Control Unit on Zynq FPGA for Green Communication

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Anurag Shrivastava ◽  
Ali Rizwan ◽  
Neelam Sanjeev Kumar ◽  
R. Saravanakumar ◽  
Inderjit Singh Dhanoa ◽  
...  

The issue of the energy shortage is affecting the entire planet. This is occurring because of massive population and industry growth around the world. As a result, the entire world is attempting to implement green networking systems and manufacture the power/energy efficient products. This research work discusses the green networking system technologies. This work introduces a power-efficient control unit (CU) design and implemented on the Zynq SoC (System on Chip) ultrascale field programmable gate array (FPGA). The VIVADO HLx Design Suite is used to simulate and analyze the CU model which is considered as one of the key components of central processing unit (CPU), used for data communication purposes. The CU is made suitable for the green communication by making it power-efficient. Therefore, the power consumption of the CU is analyzed for the various set frequency value ranging between 100 MHz and 5 GHz, and it is discovered that as the clock frequency rises up, the total power consumption also tends to get increased. The total power of the proposed model is reduced by 77.42%, 21.29%, and 17.93% from three models, respectively, being compared in the present paper. Final results shows that the CU is better suited to run at low frequencies to optimize power consumption.

2019 ◽  
Vol 25 (6) ◽  
pp. 35-39
Author(s):  
Libor Chrastecky ◽  
Jaromir Konecny ◽  
Martin Stankus ◽  
Michal Prauzek

This article describes implementation possibilities of specialized microcontroller peripherals, as hardware solution for Internet of Things (IoT) low-power communication, interfaces. In this contribution, authors use the NXP FlexIO periphery. Meanwhile, RFC1662 is used as a reference communication standard. Implementation of RFC1662 is performed by software and hardware approaches. The total power consumption is measured during experiments. In the result section, authors evaluate a time-consumption trade-off between the software approach running in Central Processing Unit (CPU) and hardware implementation using NXP FlexIO periphery. The results confirm that the hardware-based approach is effective in terms of power consumption. This method is applicable in IoT embedded devices.


With the crisis of power across the globe, green communication and power-efficient devices are getting more and more attention. This work emphasis about the implementation of Control Unit (CU) circuit on FPGA kit. In this project, power consumption of CU circuit is analyzed by changing the different Input/Output (I/O) standards of FPGA. This project is implemented on Xilinx 14.1 tool and the power consumption on CU is calculated with X Power Analyzer tool on 28-Nano-Meter (nm) Artix-7 Field Programmable Gate Array (FPGA). Out of different I/O standards, CU circuit is most power efficient with LVCMOS I/O standard on Artix-7 FPGA


2016 ◽  
Vol 21 (1) ◽  
pp. 67-77
Author(s):  
Vasilis Kolios ◽  
Konstantinos Giannakidis ◽  
Grigorios Kalivas

Abstract The over 5 GHz available spectral space allocated worldwide around the 60 GHz band, is very promising for very high data rate wireless short-range communications. In this article we present two key components for the 60 GHz front-end of a transceiver, in 130 nm RF CMOS technology: a single-balanced mixer with high Conversion Gain (CG), reduced Noise Figure (NF) and low power consumption, and an LC cross-coupled Voltage Controlled Oscillator (VCO) with very good linearity, with respect to Vctrl, and very low Phase Noise (PN). In both circuits, custom designed inductors and a balun structure for the mixer are employed, in order to enhance their performance. The VCO’s inductor achieves an inductance of 198 pH and a quality factor (Q) of 30, at 30 GHz. The balun shows less than 1o Phase Imbalance (PI) and less than 0.2 dB Amplitude Imbalance (AI), from 57 to 66 GHz. The mixer shows a CG greater than 15 dB and a NF lower than 12 dB. In addition, the VCO achieves a Phase Noise lower than -106 dBc/Hz at 1 MHz offset, and shows great linearity for the entire band. Both circuits are biased with a 1.2 V supply voltage and the total power consumption is about 10.6 mW for the mixer and 10.92 mW for the VCO.


These works describe the implementation of a control unit which is an important part of Central Processing Unit (CPU) with the Field Programmable Gate Array (FPGA). In this work a frequency scaled and thermal aware energy-efficient control unit is designed with the help of 28 nanometer (nm) technology based FPGA. Frequency varies from 100MHz to 5GHz and the rise in frequency also gives rise in power consumption of control unit with FPGA. The thermal properties of FPGA also increase with increment in frequency. This whole experiment is done on Xilinx 14.1 ISE Design Suit and it is observed that lower the frequency, lower will be the power consumption of FPGA.


With the crisis of power across the globe, green communication and power-efficient devices are getting more and more attention. This work emphasis about the implementation of Control Unit (CU) circuit on FPGA kit. In this project, power consumption of CU circuit is analyzed by changing the different Input/Output (I/O) standards of FPGA. This project is implemented on Xilinx 14.1 tool and the power consumption on CU is calculated with X Power Analyzer tool on 28-Nano-Meter (nm) Artix-7 Field Programmable Gate Array (FPGA). Out of different I/O standards, CU circuit is most power efficient with LVCMOS I/O standard on Artix-7 FPGA.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6491
Author(s):  
Haifeng Zhang ◽  
Xiaoti Wu ◽  
Yuyu Du ◽  
Hongqing Guo ◽  
Chuxi Li ◽  
...  

Extracting features from sensing data on edge devices is a challenging application for which deep neural networks (DNN) have shown promising results. Unfortunately, the general micro-controller-class processors which are widely used in sensing system fail to achieve real-time inference. Accelerating the compute-intensive DNN inference is, therefore, of utmost importance. As the physical limitation of sensing devices, the design of processor needs to meet the balanced performance metrics, including low power consumption, low latency, and flexible configuration. In this paper, we proposed a lightweight pipeline integrated deep learning architecture, which is compatible with open-source RISC-V instructions. The dataflow of DNN is organized by the very long instruction word (VLIW) pipeline. It combines with the proposed special intelligent enhanced instructions and the single instruction multiple data (SIMD) parallel processing unit. Experimental results show that total power consumption is about 411 mw and the power efficiency is about 320.7 GOPS/W.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3129
Author(s):  
Jewon Oh ◽  
Daisuke Sumiyoshi ◽  
Masatoshi Nishioka ◽  
Hyunbae Kim

The mass introduction of renewable energy is essential to reduce carbon dioxide emissions. We examined an operation method that combines the surplus energy of photovoltaic power generation using demand response (DR), which recognizes the balance between power supply and demand, with an aquifer heat storage system. In the case that predicts the occurrence of DR and performs DR storage and heat dissipation operation, the result was an operation that can suppress daytime power consumption without increasing total power consumption. Case 1-2, which performs nighttime heat storage operation for about 6 h, has become an operation that suppresses daytime power consumption by more than 60%. Furthermore, the increase in total power consumption was suppressed by combining DR heat storage operation. The long night heat storage operation did not use up the heat storage amount. Therefore, it is recommended to the heat storage operation at night as much as possible before DR occurs. In the target area of this study, the underground temperature was 19.1 °C, the room temperature during cooling was about 25 °C and groundwater could be used as the heat source. The aquifer thermal energy storage (ATES) system in this study uses three wells, and consists of a well that pumps groundwater, a heat storage well that stores heat and a well that used heat and then returns it. Care must be taken using such an operation method depending on the layer configuration.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Zigang Dong ◽  
Xiaolin Zhou ◽  
Yuanting Zhang

We proposed a new method for designing the CMOS differential log-companding amplifier which achieves significant improvements in linearity, common-mode rejection ratio (CMRR), and output range. With the new nonlinear function used in the log-companding technology, this proposed amplifier has a very small total harmonic distortion (THD) and simultaneously a wide output current range. Furthermore, a differential structure with conventionally symmetrical configuration has been adopted in this novel method in order to obtain a high CMRR. Because all transistors in this amplifier operate in the weak inversion, the supply voltage and the total power consumption are significantly reduced. The novel log-companding amplifier was designed using a 0.18 μm CMOS technology. Improvements in THD, output current range, noise, and CMRR are verified using simulation data. The proposed amplifier operates from a 0.8 V supply voltage, shows a 6.3 μA maximum output current range, and has a 6 μW power consumption. The THD is less than 0.03%, the CMRR of this circuit is 74 dB, and the input referred current noise density is166.1 fA/Hz. This new method is suitable for biomedical applications such as electrocardiogram (ECG) signal acquisition.


2016 ◽  
Author(s):  
S. Tesch ◽  
T. Morosuk ◽  
G. Tsatsaronis

The increasing demand for primary energy leads to a growing market of natural gas and the associated market for liquefied natural gas (LNG) increases, too. The liquefaction of natural gas is an energy- and cost-intensive process. After exploration, natural gas, is pretreated and cooled to the liquefaction temperature of around −160°C. In this paper, a novel concept for the integration of the liquefaction of natural gas into an air separation process is introduced. The system is evaluated from the energetic and exergetic points of view. Additionally, an advanced exergy analysis is conducted. The analysis of the concepts shows the effect of important parameters regarding the maximum amount of liquefiable of natural gas and the total power consumption. Comparing the different cases, the amount of LNG production could be increased by two thirds, while the power consumption is doubled. The results of the exergy analysis show, that the introduction of the liquefaction of natural gas has a positive effect on the exergetic efficiency of a convetional air separation unit, which increases from 38% to 49%.


Sign in / Sign up

Export Citation Format

Share Document