scholarly journals A Constitutive Model of Sandy Gravel Soil under Large-Sized Loading/Unloading Triaxial Tests

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Pengfei Zhang ◽  
Han Liu ◽  
Zhentu Feng ◽  
Chaofeng Jia ◽  
Rui Zhou

Based on large-scale triaxial tests of sandy gravel materials, the strength and deformation characteristics under loading/unloading conditions are analyzed. At the same time, the applicability of the hyperbolic constitutive model to sandy gravel is studied using experimental data. The results indicate that sandy gravel under low confining pressures (0.2 and 0.4 MPa) shows a weak softening trend; the higher the confining pressure, the more obvious the hardening tendency (0.6 and 0.8 MPa) and the greater the peak strength. During unloading tests, strain softening occurs, and the peak strength increases with increasing confining pressure. During loading tests, dilatancy appears when the confining pressure is low (0.2 MPa). With increasing confining pressure (0.4, 0.6, and 0.8 MPa), the dilatancy trend gradually weakens, and the cumulative volume tric strain increases, which reflects the relevance of the stress paths. Through research, it is found that the hyperbolic constitutive model has good applicability to sandy gravel soils, and the corresponding model parameters are obtained.

2011 ◽  
Vol 250-253 ◽  
pp. 2632-2639
Author(s):  
Bin Xu ◽  
De Gao Zou ◽  
Jing Bi ◽  
Xian Jing Kong ◽  
Tao Gong

A series of large scale consolidated drained shear triaxial tests were performed on reinforced and unreinforced sand-gravel specimens, the peak strength and residual strength characteristics of reinforced and unreinforced sand-gravel specimens were compared. The results show that: the peak strength, the residual strength and cohesion of reinforced sand-gravel are higher than unreinforced specimens, and is related to the characteristics of geotechnical grille used in this study. However, adding geotechnical grille has less effect on maximum volumetric strain and internal friction angle of sand-gravel.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Tianpeng Li ◽  
Junli Han ◽  
Shixin Wang ◽  
Yong He ◽  
Xiong Chen ◽  
...  

To describe the effect of confining pressure on the mechanical responses of N15 propellant, a constitutive model considering the confining pressure effect was first established for N15 propellant based on the elastic-viscoelastic correspondence principle. Then, the mechanical properties of N15 solid propellant under different confining pressures were obtained using confining pressure test system, and the obtained results indicate that the initial modulus of propellant did not change with confining pressure, but the maximum tensile strength, rupture strength, the maximum elongation, and elongation at break increased with increasing confining pressure. In conjunction with propellants’ mesoscopic structure and cross-section analysis, the mechanical mechanism of confining pressure effect on propellant was initially disclosed. Due to confining pressure, the particle dewetting inside the propellant was reduced, the hole propagation was delayed, and crack extension inhibited germination, proving that confining pressure has a strengthening impact on the propellant. Finally, assuming that the model parameters were dependent on pressure, the model parameters acquisition and validation were conducted. The results demonstrated that constitutive model can describe confining pressure influence on the mechanical properties of N15 propellant accurately.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yong-Sheng Liu ◽  
Zhuan-Zhuan Qiu ◽  
Xue-Cai Zhan ◽  
Hui-Nan Liu ◽  
Hai-Nan Gong

Abstract The layered composite rock was subjected to triaxial compression tests under constant confining pressure and the stress–strain curves under different confining pressures were obtained. Based on the continuous damage theory and statistical strength theory, it is assumed that the strength of rock microelements obeys Weibull distribution by taking the defects such as random micro-cracks in the rock into account. The statistical constitutive model of layered composite rock with damage correction is established by taking the axial strain of rock as a random distribution variable of microelement strength. The model parameters were determined by the curve fitting method and referring to some test parameters. By comparing the experimental data and the constitutive model curve, the rationality and feasibility of the model are verified.


2012 ◽  
pp. 587-592
Author(s):  
S Lenart ◽  
J Koseki ◽  
T Sato ◽  
Y Miyashita ◽  
H Thang

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jinlong Cai ◽  
Wei Zou

A conventional triaxial compression test of Jurassic-Cretaceous typical weakly consolidated sandstone from a mining area in Ordos, China, was conducted using an MTS816 tester. Results showed that, before the peak, the rock had a distinct yield stage. When the specimen reached its peak strength, the strength decreased rapidly and showed an obvious brittle failure. When the confining pressure was increased to 15 MPa, the decrease of strength was slow and the rock tended toward ductile failure. With the increase of confining pressure, the cyclic strain initially increased slightly, whereas the volumetric strain increased greatly and the rock sample was in a compression state. When the load reached a critical value, the curve was reversely bent, resulting in volume expansion, whereas the peak strength, residual strength, and elastic modulus increased with confining pressure, and Poisson’s ratio decreased with the confining pressure. In the model based on macroscopic failure rock, the expression of the relationship between fracture angle and confining pressure provided a solid theoretical basis for the direction and failure mode of the macroscopic crack. Based on the rock strength theory and Weibull random distribution assumption of rock element strength, the damage variable correction coefficient was introduced when the residual strength was considered. Then, the mathematical expression of the 3D damage statistical constitutive model was established. Finally, the theoretical curve of the established constitutive model was compared with the triaxial test curve, which showed a high degree of coincidence.


2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Fang Xu ◽  
Wuming Leng ◽  
Rusong Nie ◽  
Qishu Zhang ◽  
Qi Yang

A new prestressed reinforcement device (PRD) consisting of two lateral pressure plates (LPPs) and a reinforcement bar is developed to strengthen soil embankments by improving the soil confining pressure and providing lateral constraint on embankment slopes. The reinforcement effects of PRDs were demonstrated by investigating the beneficial effects of increasing confining pressure on the soil behavior via the performance of a series of large-scale static and cyclic triaxial tests on a coarse-grained embankment soil. The results show that PRDs can effectively improve the soil shear strength, bearing capacity, ability to resist elastic and plastic deformation, critical dynamic stress, and dynamic shear modulus, and empirical methods were also developed to determine the critical dynamic stress and initial dynamic shear modulus of the embankment soil. Moreover, 3D finite element analyses (FEAs) with an LPP width of 1.2 m were performed to analyze the additional stress field in a prestressed heavy-haul railway embankment. The FEAs showed that the additional stress at a given external distance from the border of an LPP first increased to a maximum value and then gradually decreased with increasing depth; the additional stress was transferred to the zones where the subgrade tends to have higher stresses with peak stress diffusion angles of 34° (slope direction) and 27° (longitudinal direction); and a continuous effective reinforcement zone with a minimum additional stress coefficient of approximately 0.2 was likely to form at the diffusion surface of the train loads, provided that the net spacing of the LPPs was 0.7 m. The reinforcement zone above the diffusion surface of the train loads can act as a protective layer for the zones that tend to have higher stresses. Finally, the advantages and application prospects of PRDs are discussed in detail. The newly developed PRDs may provide a cost-effective alternative for strengthening soil embankments.


2006 ◽  
Vol 326-328 ◽  
pp. 1797-1800 ◽  
Author(s):  
Qing Chun Zhou ◽  
Hai Bo Li ◽  
Chun He Yang ◽  
Chao Wen Luo

The mechanical properties of rock under high temperature, high geostress and high pore pressure are the basic and important information to assess the safety of underground engineering in west China. Based on the environmental conditions of the west route of south-to-north water transfer project in west China, a series of triaxial tests at confining pressures (0 to 60MPa) and temperatures (25°C to 70°C) as well as pore pressure (0 to 10MPa) have been conducted for a sandstone. It is reported that under the temperatures varying from 25°C to 70°C, the strength of the rock increases with the increment of confining pressure, while the deformation modulus of the rock doesn’t change distinctly with the increment of confining pressures. It is also indicated under the temperatures condition in the experiments, when the confining pressure is lower than 40MPa, the strength of the rock increases with the increment of temperature, whereas when the confining pressure is higher than 40MPa, the strength of rock tend to decrease with increment of temperature. It is further shown that the strength decreases with increasing pore pressure, and the decreasing rates tend to decrease with the increment of confining pressures.


Author(s):  
Nubia Aurora González Molano ◽  
Jacobo Canal Vila ◽  
Héctor González Pérez ◽  
José Alvarellos Iglesias ◽  
M. R. Lakshmikantha

In this study an extensive experimental program has been carried out in order to characterize the mechanical behavior of two weak sandstone formations of an offshore field for application to sand production modeling. The experimental tests included Scratch tests, Triaxial tests and Advanced thick wall cylinder tests (ATWC) where the sand production initiation and the cumulative sand produced were registered. Numerical simulations of experimental tests were then performed using an advanced elasto-plastic constitutive model. Triaxial tests simulations allowed calibrating the constitutive model parameters. These parameters were employed for the numerical simulation of the ATWC in order to determine the equivalent plastic strain threshold required to the onset of sand production observed in laboratory for sanding assessment. Results obtained highlight the importance to use a realistic representation of the rock behavior focusing on post-yield behavior in order to build confidence in model predictions.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1662 ◽  
Author(s):  
Jianguo Wang ◽  
Bowen Hu ◽  
Jia Hwei Soon

The variation of physical and mechanical properties of the lightweight bulk filling material with cement and expanded polystyrene (EPS) beads contents under different confining pressures is important to construction and geotechnical applications. In this study, a lightweight bulk filling material was firstly fabricated with Singapore marine clay, ordinary Portland cement and EPS. Then, the influences of EPS beads content, cement content, curing time and confining pressure on the mass density, stress–strain behavior and compressive strength of this lightweight bulk filling material were investigated by unconsolidated and undrained (UU) triaxial tests. In these tests, the mass ratios of EPS beads to dry clay (E/S) were 0%, 0.5%, 1%, 2%, and 4% and the mass ratios of cement to dry clay (C/S) were 10% and 15%. Thirdly, a series of UU triaxial tests were performed at a confining pressure of 0 kPa, 50 kPa, 100 kPa, and 150 kPa after three curing days, seven curing days, and 28 curing days. The results show that the mass density of this lightweight bulk filling material was mainly controlled by the E/S ratio. Its mass density decreased by 55.6% for the C/S ratio 10% and 54.9% for the C/S ratio 15% when the E/S ratio increased from 0% to 4% after three curing days. Shear failure more easily occurred in the specimens with higher cement content and lower confining pressure. The relationships between compressive strength and mass density or failure strain could be quantified by the power function. Increasing cement content and reducing EPS beads content will increase mass density and compressive strength of this lightweight bulk filling material. The compressive strength with curing time can be expressed by a logarithmic function with fitting correlation coefficient ranging from 0.83 to 0.97 for five confining pressures. These empirical formulae will be useful for the estimation of physical and mechanical properties of lightweight concretes in engineering application.


Sign in / Sign up

Export Citation Format

Share Document