scholarly journals Mitochondrial Dysfunction and Sirtuins: Important Targets in Hearing Loss

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lingjun Zhang ◽  
Zhengde Du ◽  
Shusheng Gong

Mitochondrial dysfunction has been suggested to be a risk factor for sensorineural hearing loss (SNHL) induced by aging, noise, ototoxic drugs, and gene. Reactive oxygen species (ROS) are mainly derived from mitochondria, and oxidative stress induced by ROS contributes to cochlear damage as well as mitochondrial DNA mutations, which may enhance the sensitivity and severity of hearing loss and disrupt ion homeostasis (e.g., Ca2+ homeostasis). The formation and accumulation of ROS further undermine mitochondrial components and ultimately lead to apoptosis and necrosis. SIRT3–5, located in mitochondria, belong to the family of sirtuins, which are highly conserved deacetylases dependent on nicotinamide adenine dinucleotide (NAD+). These deacetylases regulate diverse cellular biochemical activities. Recent studies have revealed that mitochondrial sirtuins, especially SIRT3, modulate ROS levels in hearing loss pathologies. Although the precise functions of SIRT4 and SIRT5 in the cochlea remain unclear, the molecular mechanisms in other tissues indicate a potential protective effect against hearing loss. In this review, we summarize the current knowledge regarding the role of mitochondrial dysfunction in hearing loss, discuss possible functional links between mitochondrial sirtuins and SNHL, and propose a perspective that SIRT3–5 have a positive effect on SNHL.

2007 ◽  
Vol 226 (1-2) ◽  
pp. 185-193 ◽  
Author(s):  
Tatsuya Yamasoba ◽  
Shinichi Someya ◽  
Chikako Yamada ◽  
Richard Weindruch ◽  
Tomas A. Prolla ◽  
...  

2021 ◽  
Vol 55 (S3) ◽  
pp. 65-86

The family of two-pore domain potassium (K2P) channels is critically involved in central cellular functions such as ion homeostasis, cell development, and excitability. K2P channels are widely expressed in different human cell types and organs. It is therefore not surprising that aberrant expression and function of K2P channels are related to a spectrum of human diseases, including cancer, autoimmune, CNS, cardiovascular, and urinary tract disorders. Despite homologies in structure, expression, and stimulus, the functional diversity of K2P channels leads to heterogeneous influences on human diseases. The role of individual K2P channels in different disorders depends on expression patterns and modulation in cellular functions. However, an imbalance of potassium homeostasis and action potentials contributes to most disease pathologies. In this review, we provide an overview of current knowledge on the role of K2P channels in human diseases. We look at altered channel expression and function, the potential underlying molecular mechanisms, and prospective research directions in the field of K2P channels.


2020 ◽  
Vol 48 (2) ◽  
pp. 429-439 ◽  
Author(s):  
Jorge Gago ◽  
Danilo M. Daloso ◽  
Marc Carriquí ◽  
Miquel Nadal ◽  
Melanie Morales ◽  
...  

Besides stomata, the photosynthetic CO2 pathway also involves the transport of CO2 from the sub-stomatal air spaces inside to the carboxylation sites in the chloroplast stroma, where Rubisco is located. This pathway is far to be a simple and direct way, formed by series of consecutive barriers that the CO2 should cross to be finally assimilated in photosynthesis, known as the mesophyll conductance (gm). Therefore, the gm reflects the pathway through different air, water and biophysical barriers within the leaf tissues and cell structures. Currently, it is known that gm can impose the same level of limitation (or even higher depending of the conditions) to photosynthesis than the wider known stomata or biochemistry. In this mini-review, we are focused on each of the gm determinants to summarize the current knowledge on the mechanisms driving gm from anatomical to metabolic and biochemical perspectives. Special attention deserve the latest studies demonstrating the importance of the molecular mechanisms driving anatomical traits as cell wall and the chloroplast surface exposed to the mesophyll airspaces (Sc/S) that significantly constrain gm. However, even considering these recent discoveries, still is poorly understood the mechanisms about signaling pathways linking the environment a/biotic stressors with gm responses. Thus, considering the main role of gm as a major driver of the CO2 availability at the carboxylation sites, future studies into these aspects will help us to understand photosynthesis responses in a global change framework.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 629
Author(s):  
Jorge Gutiérrez-Cuevas ◽  
Ana Sandoval-Rodriguez ◽  
Alejandra Meza-Rios ◽  
Hugo Christian Monroy-Ramírez ◽  
Marina Galicia-Moreno ◽  
...  

Obesity is defined as excessive body fat accumulation, and worldwide obesity has nearly tripled since 1975. Excess of free fatty acids (FFAs) and triglycerides in obese individuals promote ectopic lipid accumulation in the liver, skeletal muscle tissue, and heart, among others, inducing insulin resistance, hypertension, metabolic syndrome, type 2 diabetes (T2D), atherosclerosis, and cardiovascular disease (CVD). These diseases are promoted by visceral white adipocyte tissue (WAT) dysfunction through an increase in pro-inflammatory adipokines, oxidative stress, activation of the renin-angiotensin-aldosterone system (RAAS), and adverse changes in the gut microbiome. In the heart, obesity and T2D induce changes in substrate utilization, tissue metabolism, oxidative stress, and inflammation, leading to myocardial fibrosis and ultimately cardiac dysfunction. Peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of carbohydrate and lipid metabolism, also improve insulin sensitivity, triglyceride levels, inflammation, and oxidative stress. The purpose of this review is to provide an update on the molecular mechanisms involved in obesity-linked CVD pathophysiology, considering pro-inflammatory cytokines, adipokines, and hormones, as well as the role of oxidative stress, inflammation, and PPARs. In addition, cell lines and animal models, biomarkers, gut microbiota dysbiosis, epigenetic modifications, and current therapeutic treatments in CVD associated with obesity are outlined in this paper.


2018 ◽  
Vol 19 (10) ◽  
pp. 3219 ◽  
Author(s):  
Balbina García-Reyes ◽  
Anna-Laura Kretz ◽  
Jan-Philipp Ruff ◽  
Silvia von Karstedt ◽  
Andreas Hillenbrand ◽  
...  

The family of cyclin-dependent kinases (CDKs) has critical functions in cell cycle regulation and controlling of transcriptional elongation. Moreover, dysregulated CDKs have been linked to cancer initiation and progression. Pharmacological CDK inhibition has recently emerged as a novel and promising approach in cancer therapy. This idea is of particular interest to combat pancreatic ductal adenocarcinoma (PDAC), a cancer entity with a dismal prognosis which is owed mainly to PDAC’s resistance to conventional therapies. Here, we review the current knowledge of CDK biology, its role in cancer and the therapeutic potential to target CDKs as a novel treatment strategy for PDAC.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1887 ◽  
Author(s):  
Francesco Bonollo ◽  
George N. Thalmann ◽  
Marianna Kruithof-de Julio ◽  
Sofia Karkampouna

Tumors strongly depend on their surrounding tumor microenvironment (TME) for growth and progression, since stromal elements are required to generate the optimal conditions for cancer cell proliferation, invasion, and possibly metastasis. Prostate cancer (PCa), though easily curable during primary stages, represents a clinical challenge in advanced stages because of the acquisition of resistance to anti-cancer treatments, especially androgen-deprivation therapies (ADT), which possibly lead to uncurable metastases such as those affecting the bone. An increasing number of studies is giving evidence that prostate TME components, especially cancer-associated fibroblasts (CAFs), which are the most abundant cell type, play a causal role in PCa since the very early disease stages, influencing therapy resistance and metastatic progression. This is highlighted by the prognostic value of the analysis of stromal markers, which may predict disease recurrence and metastasis. However, further investigations on the molecular mechanisms of tumor–stroma interactions are still needed to develop novel therapeutic approaches targeting stromal components. In this review, we report the current knowledge of the characteristics and functions of the stroma in prostate tumorigenesis, including relevant discussion of normal prostate homeostasis, chronic inflammatory conditions, pre-neoplastic lesions, and primary and metastatic tumors. Specifically, we focus on the role of CAFs, to point out their prognostic and therapeutic potential in PCa.


Endocrinology ◽  
2020 ◽  
Vol 162 (1) ◽  
Author(s):  
Manasi Das ◽  
Consuelo Sauceda ◽  
Nicholas J G Webster

Abstract Mounting evidence suggests a role for mitochondrial dysfunction in the pathogenesis of many diseases, including type 2 diabetes, aging, and ovarian failure. Because of the central role of mitochondria in energy production, heme biosynthesis, calcium buffering, steroidogenesis, and apoptosis signaling within cells, understanding the molecular mechanisms behind mitochondrial dysregulation and its potential implications in disease is critical. This review will take a journey through the past and summarize what is known about mitochondrial dysfunction in various disorders, focusing on metabolic alterations and reproductive abnormalities. Evidence is presented from studies in different human populations, and rodents with genetic manipulations of pathways known to affect mitochondrial function.


Glycobiology ◽  
2020 ◽  
Author(s):  
Kaitlyn A Dorsett ◽  
Michael P Marciel ◽  
Jihye Hwang ◽  
Katherine E Ankenbauer ◽  
Nikita Bhalerao ◽  
...  

Abstract The ST6GAL1 sialyltransferase, which adds α2–6 linked sialic acids to N-glycosylated proteins, is overexpressed in a wide range of human malignancies. Recent studies have established the importance of ST6GAL1 in promoting tumor cell behaviors such as invasion, resistance to cell stress, and chemoresistance. Furthermore, ST6GAL1 activity has been implicated in imparting cancer stem cell characteristics. However, despite the burgeoning interest in the role of ST6GAL1 in the phenotypic features of tumor cells, insufficient attention has been paid to the molecular mechanisms responsible for ST6GAL1 upregulation during neoplastic transformation. Evidence suggests that these mechanisms are multifactorial, encompassing genetic, epigenetic, transcriptional, and post-translational regulation. The purpose of this review is to summarize current knowledge regarding the molecular events that drive enriched ST6GAL1 expression in cancer cells.


Antioxidants ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 109 ◽  
Author(s):  
Chisato Fujimoto ◽  
Tatsuya Yamasoba

Mitochondrial dysfunction is associated with the etiologies of sensorineural hearing loss, such as age-related hearing loss, noise- and ototoxic drug-induced hearing loss, as well as hearing loss due to mitochondrial gene mutation. Mitochondria are the main sources of reactive oxygen species (ROS) and ROS-induced oxidative stress is involved in cochlear damage. Moreover, the release of ROS causes further damage to mitochondrial components. Antioxidants are thought to counteract the deleterious effects of ROS and thus, may be effective for the treatment of oxidative stress-related diseases. The administration of mitochondria-targeted antioxidants is one of the drug delivery systems targeted to mitochondria. Mitochondria-targeted antioxidants are expected to help in the prevention and/or treatment of diseases associated with mitochondrial dysfunction. Of the various mitochondria-targeted antioxidants, the protective effects of MitoQ and SkQR1 against ototoxicity have been previously evaluated in animal models and/or mouse auditory cell lines. MitoQ protects against both gentamicin- and cisplatin-induced ototoxicity. SkQR1 also provides auditory protective effects against gentamicin-induced ototoxicity. On the other hand, decreasing effect of MitoQ on gentamicin-induced cell apoptosis in auditory cell lines has been controversial. No clinical studies have been reported for otoprotection using mitochondrial-targeted antioxidants. High-quality clinical trials are required to reveal the therapeutic effect of mitochondria-targeted antioxidants in terms of otoprotection in patients.


2012 ◽  
Vol 18 (8) ◽  
pp. 1058-1067 ◽  
Author(s):  
J van Horssen ◽  
ME Witte ◽  
O Ciccarelli

Axonal injury is a key feature of multiple sclerosis (MS) pathology and is currently seen as the main correlate for permanent clinical disability. Although little is known about the pathogenetic mechanisms that drive axonal damage and loss, there is accumulating evidence highlighting the central role of mitochondrial dysfunction in axonal degeneration and associated neurodegeneration. The aim of this topical review is to provide a concise overview on the involvement of mitochondrial dysfunction in axonal damage and destruction in MS. Hereto, we will discuss putative pathological mechanisms leading to mitochondrial dysfunction and recent imaging studies performed in vivo in patients with MS. Moreover, we will focus on molecular mechanisms and novel imaging studies that address the role of mitochondrial metabolism in tissue repair. Finally, we will briefly review therapeutic strategies aimed at improving mitochondrial metabolism and function under neuroinflammatory conditions.


Sign in / Sign up

Export Citation Format

Share Document