transcriptional elongation
Recently Published Documents


TOTAL DOCUMENTS

416
(FIVE YEARS 101)

H-INDEX

72
(FIVE YEARS 6)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Yongkang Yang ◽  
Haiquan Lu ◽  
Chelsey Chen ◽  
Yajing Lyu ◽  
Robert N. Cole ◽  
...  

AbstractHypoxia-inducible factor-1 (HIF-1) is a transcription factor that acts as a regulator of oxygen (O2) homeostasis in metazoan species by binding to hypoxia response elements (HREs) and activating the transcription of hundreds of genes in response to reduced O2 availability. RNA polymerase II (Pol II) initiates transcription of many HIF target genes under non-hypoxic conditions but pauses after approximately 30–60 nucleotides and requires HIF-1 binding for release. Here we report that in hypoxic breast cancer cells, HIF-1 recruits TRIM28 and DNA-dependent protein kinase (DNA-PK) to HREs to release paused Pol II. We show that HIF-1α and TRIM28 assemble the catalytically-active DNA-PK heterotrimer, which phosphorylates TRIM28 at serine-824, enabling recruitment of CDK9, which phosphorylates serine-2 of the Pol II large subunit C-terminal domain as well as the negative elongation factor to release paused Pol II, thereby stimulating productive transcriptional elongation. Our studies reveal a molecular mechanism by which HIF-1 stimulates gene transcription and reveal that the anticancer effects of drugs targeting DNA-PK in breast cancer may be due in part to their inhibition of HIF-dependent transcription.


2021 ◽  
Author(s):  
Eva Ibars ◽  
Gemma Belli ◽  
Celia Casas ◽  
Joan Codina-Fabra ◽  
Marc Tarres ◽  
...  

Ubiquitination controls numerous cellular processes, and its deregulation is associated to many pathologies. The Nse1 subunit in the Smc5/6 complex contains a RING domain with ubiquitin E3 ligase activity and important functions in genome integrity. However, Nse1-dependent ubiquitin targets remain largely unknown. Here, we use label-free quantitative proteomics to analyse the nuclear ubiquitinome of nse1-C274A RING mutant cells. Our results show that Nse1 impacts on the ubiquitination of several proteins involved in DNA damage tolerance, ribosome biogenesis and metabolism that, importantly, extend beyond canonical functions of the Smc5/6 complex in chromosome segregation. In addition, our analysis uncovers an unexpected connection between Nse1 and RNA polymerase I (RNAP I) ubiquitination. Specifically, Nse1 promotes the ubiquitination of K408 and K410 in A190, the largest subunit of RNAP I, to induce its degradation. We propose that this mechanism contributes to Smc5/6-dependent rDNA disjunction in response to transcriptional elongation defects.


Author(s):  
Jungmin Choi ◽  
Zae Young Ryoo ◽  
Dong-Hyung Cho ◽  
Hyun-Shik Lee ◽  
Hong-Yeoul Ryu

AbstractCrosstalk between post-translational modifications of histone proteins influences the regulation of chromatin structure and gene expression. Among such crosstalk pathways, the best-characterized example is H2B monoubiquitination-mediated H3K4 and H3K79 methylation, which is referred to as trans-tail regulation. Although many studies have investigated the fragmentary effects of this pathway on silencing and transcription, its ultimate contribution to transcriptional control has remained unclear. Recent advances in molecular techniques and genomics have, however, revealed that the trans-tail crosstalk is linked to a more diverse cascade of histone modifications and has various functions in cotranscriptional processes. Furthermore, H2B monoubiquitination sequentially facilitates H3K4 dimethylation and histone sumoylation, thereby providing a binding platform for recruiting Set3 complex proteins, including two histone deacetylases, to restrict cryptic transcription from gene bodies. The removal of both ubiquitin and SUMO, small ubiquitin-like modifier, modifications from histones also facilitates a change in the phosphorylation pattern of the RNA polymerase II C-terminal domain that is required for subsequent transcriptional elongation. Therefore, this review describes recent findings regarding trans-tail regulation-driven processes to elaborate on their contribution to maintaining transcriptional fidelity.


Endocrinology ◽  
2021 ◽  
Vol 163 (1) ◽  
Author(s):  
Fitya Mozar ◽  
Vikas Sharma ◽  
Shashank Gorityala ◽  
Jeffrey M Albert ◽  
Yan Xu ◽  
...  

Abstract We have previously reported that hexamethylene bis-acetamide inducible protein 1 (HEXIM1) inhibits the activity of ligand-bound estrogen receptor α (ERα) and the androgen receptor (AR) by disrupting the interaction between these receptors and positive transcriptional elongation factor b (P-TEFb) and attenuating RNA polymerase II (RNAPII) phosphorylation at serine 2. Functional consequences of the inhibition of transcriptional activity of ERα and AR by HEXIM1 include the inhibition of ERα- and AR-dependent gene expression, respectively, and the resulting attenuation of breast cancer (BCa) and prostate cancer (PCa) cell proliferation and growth. In our present study, we determined that HEXIM1 inhibited AKR1C3 expression in BCa and PCa cells. AKR1C3, also known as 17β-hydroxysteroid dehydrogenase (17β-HSD) type 5, is a key enzyme involved in the synthesis of 17β-estradiol (E2) and 5-dihydrotestosterone (DHT). Downregulation of AKR1C3 by HEXIM1 influenced E2 and DHT production, estrogen- and androgen-dependent gene expression, and cell proliferation. Our studies indicate that HEXIM1 has the unique ability to inhibit both the transcriptional activity of the ER and AR and the synthesis of the endogenous ligands of these receptors.


2021 ◽  
Author(s):  
Ryan Van Damme ◽  
Kongpan Li ◽  
Minjie Zhang ◽  
Jianhui Bai ◽  
Wilson Lee ◽  
...  

Three-dimensional (3D) structures dictate the functions of RNA molecules in a wide variety of biological processes. However, direct determination of RNA 3D structures in vivo is difficult due to their large sizes, conformational heterogeneity, and dynamics. Here we present a new method, Spatial 2'-Hydroxyl Acylation Reversible Crosslinking (SHARC), which uses chemical crosslinkers of defined lengths to measure distances between nucleotides in cellular RNA. Integrating crosslinking, exonuclease (exo) trimming, proximity ligation, and high throughput sequencing, SHARC enables transcriptome-wide tertiary structure contact maps at high accuracy and precision, revealing heterogeneous RNA structures and interactions. SHARC data provide constraints that improves Rosetta-based RNA 3D structure modeling at near-nanometer resolution. Integrating SHARC-exo with other crosslinking-based methods, we discover compact folding of the 7SK RNA, a critical regulator of transcriptional elongation. These results establish a new strategy for measuring RNA 3D distances and alternative conformations in their native cellular context.


2021 ◽  
Author(s):  
Riley Horvath ◽  
Tom Malcolm ◽  
Matthew Dahabieh ◽  
Ivan Sadowski

The conserved HIV-1 LTR cis elements RBE1/3 bind the factor RBF2, consisting of USF1/2 and TFII-I, and are essential for reactivation of HIV-1 by T cell signaling. We determined that TFII-I recruits the tripartite motif protein TRIM24 to the LTR, and this interaction is required for efficient reactivation of HIV-1 expression in response to T cell signaling, similar to the effect of TFII-I depletion. Knockout of TRIM24 did not affect recruitment of RNA Pol II to the LTR promoter, but inhibited transcriptional elongation, an effect that was associated with decreased RNA Pol II CTD S2 phosphorylation and impaired recruitment of CDK9 to the LTR. These results demonstrate that TFII-I promotes transcriptional elongation in response to T cell activation through recruitment of the co-factor TRIM24, which is necessary for efficient recruitment of the elongation factor P-TEFb.


2021 ◽  
Vol 765 ◽  
pp. 136260
Author(s):  
Agnieszka Lukomska ◽  
Juhwan Kim ◽  
Bruce A. Rheaume ◽  
Jian Xing ◽  
Alexela Hoyt ◽  
...  

Author(s):  
Sanchita Rauth ◽  
Saswati Karmakar ◽  
Ashu Shah ◽  
Parthasarathy Seshacharyulu ◽  
Rama Krishna Nimmakayala ◽  
...  

RNA polymerase II-associated factor 1 (PAF1)/pancreatic differentiation 2 (PD2) is a core subunit of the human PAF1 complex (PAF1C) that regulates the RNA polymerase II function during transcriptional elongation. PAF1/PD2 has also been linked to the oncogenesis of pancreatic ductal adenocarcinoma (PDAC). Here, we report that PAF1/PD2 undergoes post-translational modification (PTM) through SUMOylation, enhancing the radiation resistance of PDAC cells. We identified that PAF1/PD2 is preferentially modified by small ubiquitin-related modifier 1 (SUMO 1), and mutating the residues (K)-150 and 154 by site-directed mutagenesis reduces the SUMOylation. Interestingly, PAF1/PD2 was found to directly interact with the promyelocytic leukemia (PML) protein in response to radiation and inhibiton of PAF1/PD2 SUMOylation at K-150/154 affects its interaction with PML. Our results demonstrate that SUMOylation of PAF1/PD2 increased in the radiated pancreatic cancer cells. Further, inhibition of SUMOylation or PML reduces the cell growth and proliferation of PDAC cells after radiation treatment. These results suggest that SUMOylation of PAF1/PD2 interacts with PTM for PDAC cell survival. Furthermore, abolishing the SUMOylation in PDAC cells enhances the effectiveness of radiotherapy. Overall, our results demonstrate a novel PTM and PAF1/PD2 interaction through SUMOylation and inhibiting the SUMOylation of PAF1/PD2 enhance the therapeutic efficacy for PDAC.


2021 ◽  
Author(s):  
Luciano E. Marasco ◽  
Gwendal Dujardin ◽  
Rui Sousa-Luís ◽  
Ying Hsiu Liu ◽  
José Stigliano ◽  
...  

SummarySpinal Muscular Atrophy (SMA) is a motor-neuron disease caused by loss-of-function mutations of the SMN1 gene. Humans have a paralog, SMN2, whose exon 7 is predominantly skipped, and so it cannot fully compensate for the lack of SMN1. Nusinersen (Spinraza) is a splicing-correcting antisense oligonucleotide drug (ASO) approved for clinical use. Nusinersen targets a splicing silencer located in SMN2 intron 7 pre-mRNA and, by blocking the binding of the splicing repressors hnRNPA1 and A2, it promotes higher E7 inclusion, increasing SMN protein levels. We show here that, by promoting transcriptional elongation, histone deacetylase (HDAC) inhibitors cooperate with a nusinersen-like ASO to upregulate E7 inclusion. Surprisingly, the ASO also elicits the deployment of the silencing histone mark H3K9me2 on the SMN2 gene, creating a roadblock to RNA polymerase II elongation that acts negatively on E7 inclusion. By removing the roadblock, HDAC inhibition counteracts the undesired chromatin effects of the ASO, resulting in higher E7 inclusion. Combined systemic administration of the nusinersen-like ASO and HDAC inhibitors in neonate SMA mice had strong synergistic effects on SMN expression, growth, survival, and neuromuscular function. Thus, we suggest that HDAC inhibitors have the potential to increase the clinical efficacy of nusinersen, and perhaps other splicing-modulatory ASO drugs, without large pleiotropic effects, as assessed by genome-wide analyses.


Sign in / Sign up

Export Citation Format

Share Document