scholarly journals Social Media Marketing Optimization Method Based on Deep Neural Network and Evolutionary Algorithm

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Qing Bian

Under the background of the vigorous development of China’s market economy, the marketing mix is constantly updated, which promotes the all-round development of various industries. Social media marketing has formed a relatively solid theoretical and practical foundation, especially with the continuous updating and iteration of Internet technology and the improvement of people’s requirements for experience, and we must find ways to optimize the methods of social media marketing. This study mainly introduces several optimization methods of social media marketing based on deep neural networks and advanced algorithms, and the experiments of gradient-based back-propagation algorithm and adaptive Adam’s optimization algorithm show that the proposed optimization algorithm can easily achieve the global optimal state based on the combination of back-propagation algorithm and Adam’s optimization algorithm. Accuracy of marketing is very important, so we introduce a scheme of how to accurately market, and the scheme is effective. Firstly, the FCE model is constructed by a three-layer back-propagation neural network, and then, the data input layer is designed to achieve the effect of the model.

2021 ◽  
pp. 321-326
Author(s):  
Sivaprakash J. ◽  
Manu K. S.

In the advanced global economy, crude oil is a commodity that plays a major role in every economy. As Crude oil is highly traded commodity it is essential for the investors, analysts, economists to forecast the future spot price of the crude oil appropriately. In the last year the crude oil faced a historic fall during the pandemic and reached all time low, but will this situation last? There was analysis such as fundamental analysis, technical analysis and time series analyses which were carried out for predicting the movement of the oil prices but the accuracy in such prediction is still a question. Thus, it is necessary to identify better methods to forecast the crude oil prices. This study is an empirical study to forecast crude oil prices using the neural networks. This study consists of 13 input variables with one target variable. The data are divided in the ratio 70:30. The 70% data is used for training the network and 30% is used for testing. The feed forward and back propagation algorithm are used to predict the crude oil price. The neural network proved to be efficient in forecasting in the modern era. A simple neural network performs better than the time series models. The study found that back propagation algorithm performs better while predicting the crude oil price. Hence, ANN can be used by the investors, forecasters and for future researchers.


Author(s):  
Revathi A. ◽  
Sasikaladevi N.

This chapter on multi speaker independent emotion recognition encompasses the use of perceptual features with filters spaced in Equivalent rectangular bandwidth (ERB) and BARK scale and vector quantization (VQ) classifier for classifying groups and artificial neural network with back propagation algorithm for emotion classification in a group. Performance can be improved by using the large amount of data in a pertinent emotion to adequately train the system. With the limited set of data, this proposed system has provided consistently better accuracy for the perceptual feature with critical band analysis done in ERB scale.


Author(s):  
Neeraja Koppula ◽  
K. Sarada ◽  
Ibrahim Patel ◽  
R. Aamani ◽  
K. Saikumar

This chapter explains the speech signal in moving objects depending on the recognition field by retrieving the name of individual voice speech and speaker personality. The adequacy of precisely distinguishing a speaker is centred exclusively on vocal features, as voice contact with machines is getting more pervasive in errands like phone, banking exchanges, and the change of information from discourse data sets. This audit shows the location of text-subordinate speakers, which distinguishes a solitary speaker from a known populace. The highlights are eliminated; the discourse signal is enrolled for six speakers. Extraction of the capacity is accomplished utilizing LPC coefficients, AMDF computation, and DFT. By adding certain highlights as information, the neural organization is prepared. For additional correlation, the attributes are put away in models. The qualities that should be characterized for the speakers were acquired and dissected utilizing back propagation algorithm to a format picture.


2015 ◽  
Vol 4 (1) ◽  
pp. 244
Author(s):  
Bhuvana R. ◽  
Purushothaman S. ◽  
Rajeswari R. ◽  
Balaji R.G.

Depression is a severe and well-known public health challenge. Depression is one of the most common psychological problems affecting nearly everyone either personally or through a family member. This paper proposes neural network algorithm for faster learning of depression data and classifying the depression. Implementation of neural networks methods for depression data mining using Back Propagation Algorithm (BPA) and Radial Basis Function (RBF) are presented. Experimental data were collected with 21 depression variables used as inputs for artificial neural network (ANN) and one desired category of depression as the output variable for training and testing proposed BPA/RBF algorithms. Using the data collected, the training patterns, and test patterns are obtained. The input patterns are pre-processed and presented to the input layer of BPA/RBF. The optimum number of nodes required in the hidden layer of BPA/RBF is obtained, based on the change in the mean squared error dynamically, during the successive sets of iterations. The output of BPA is given as input to RBF. Through the combined topology, the work proves to be an efficient system for diagnosis of depression.


Robotica ◽  
1998 ◽  
Vol 16 (4) ◽  
pp. 433-444 ◽  
Author(s):  
A. S. Morris ◽  
M. A. Mansor

This is an extension of previous work which used an artificial neural network with a back-propagation algorithm and a lookup table to find the inverse kinematics for a manipulator arm moving along pre-defined trajectories. The work now described shows that the performance of this technique can be improved if the back-propagation is made to be adaptive. Also, further improvement is obtained by using the whole workspace to train the neural network rather than just a pre-defined path. For the inverse kinematics of the whole workspace, a comparison has also been done between the adaptive back-propagation algorithm and radial basis function.


Sign in / Sign up

Export Citation Format

Share Document