scholarly journals Process Monitoring for Gamma Distributed Product under Neutrosophic Statistics Using Resampling Scheme

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Abdullah M. Almarashi ◽  
Muhammad Aslam

In this article, a repetitive sampling control chart for the gamma distribution under the indeterminate environment has been presented. The control chart coefficients, probability of in-control, probability of out-of-control, and average run lengths have been determined under the assumption of the symmetrical property of the normal distribution using the neutrosophic interval method. The performance of the designed chart has been evaluated using the average run length measurements under different process settings for an indeterminate environment. In-control and out-of-control nature of the proposed chart under different levels of shifts have been described. The comparison of the proposed chart has been made with the existing chart. A real-world example from the healthcare department has been included for the practical application of the proposed chart. It has been observed from the simulation study and real example that the proposed control chart is efficient in quick monitoring of the out-of-control process. It can be concluded that the proposed control chart can be applied effectively in uncertainty.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Ahmed Ibrahim Shawky ◽  
Muhammad Aslam ◽  
Khushnoor Khan

In this paper, a control chart scheme has been introduced for the mean monitoring using gamma distribution for belief statistics using multiple dependent (deferred) state sampling under the neutrosophic statistics. The coefficients of the control chart and the neutrosophic average run lengths have been estimated for specific false alarm probabilities under various process conditions. The offered chart has been compared with the existing classical chart through simulation and the real data. From the comparison, it is concluded that the performance of the proposed chart is better than that of the existing chart in terms of average run length under uncertain environment. The proposed chart has the ability to detect a shift quickly than the existing chart. It has been observed that the proposed chart is efficient in quick monitoring of the out-of-control process and a cherished addition in the toolkit of the quality control personnel.


Author(s):  
Osama H. Arif ◽  
Muhammad Aslam

AbstractThis article presents a new control chart for monitoring reliability using sudden death testing under the neutrosophic statistics (NS). The average run lengths of the in-control and the out-of-control process have been determined for evaluating the quick detection ability for small and moderate shifts. For the industrial use, tables and figures have been presented for different parameters. The proposed control chart is efficient in comparison with the existing control chart under classical statistics and value addition in the toolkit of the quality control personnel.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 562 ◽  
Author(s):  
Muhammad Aslam ◽  
Nasrullah Khan ◽  
Muhammad Khan

Existing variance control charts are designed under the assumptions that no uncertain, fuzzy and imprecise observations or parameters are in the population or the sample. Neutrosophic statistics, which is the extension of classical statistics, has been widely used when there is uncertainty in the data. In this paper, we will originally design S 2 control chart under the neutrosophic interval methods. The complete structure of the neutrosophic S 2 control chart will be given. The necessary measures of neutrosophic S 2 will be given. The neutrosophic coefficient of S 2 control chart will be determined through the neutrosophic algorithm. Some tables are given for practical use. The efficiency of the proposed control chart is shown over the S 2 control chart designed under the classical statistics in neutrosophic average run length (NARL). A real example is also added to illustrate the proposed control chart. From the comparison in the simulation study and case study, it is concluded that the proposed control chart performs better than the existing control chart under uncertainty.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Muhammad Aslam ◽  
Ali Hussein Al-Marshadi

This paper will introduce the neutrosophic COM-Poisson (NCOM-Poisson) distribution. Then, the design of the attribute control chart using the NCOM-Poisson distribution is given. The structure of the control chart under the neutrosophic statistical interval method will be given. The algorithm to determine the average run length under neutrosophic statistical interval system will be given. The performance of the proposed control chart is compared with the chart based on classical statistics in terms of neutrosophic average run length (NARL). A simulation study and a real example are also added. From the comparison of the proposed control chart with the existing chart, it is concluded that the proposed control chart is more efficient in detecting a shift in the process. Therefore, the proposed control chart will be helpful in minimizing the defective product. In addition, the proposed control chart is more adequate and effective to apply in uncertainty environment.


Symmetry ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 53 ◽  
Author(s):  
Muhammad Aslam ◽  
Nasrullah Khan ◽  
Mohammed Albassam

In this article, modified multiple dependent (or deferred) state sampling control charts for the attribute and the variable quality characteristics are presented. The proposed control charts are designed using the symmetry property of the normal distribution. The control chart coefficients are estimated through simulation at different levels of the parameters using the normal distribution. The proposed control chart scheme is evaluated by calculating the in-control average run lengths and out-of-control average run lengths. Tables are constructed for the selection of parameters for different control limit coefficients under several shift levels for the attribute data as well as the variable data. Examples are included for the practical application of the proposed control chart schemes. The proposed control chart scheme is also compared with the existing control charts. It has been observed that the proposed schemes are better in quick detection of the out-of-control processes.


Production ◽  
2011 ◽  
Vol 21 (2) ◽  
pp. 217-222 ◽  
Author(s):  
Yang Su-Fen ◽  
Tsai Wen-Chi ◽  
Huang Tzee-Ming ◽  
Yang Chi-Chin ◽  
Cheng Smiley

In practice, sometimes the process data did not come from a known population distribution. So the commonly used Shewhart variables control charts are not suitable since their performance could not be properly evaluated. In this paper, we propose a new EWMA Control Chart based on a simple statistic to monitor the small mean shifts in the process with non-normal or unknown distributions. The sampling properties of the new monitoring statistic are explored and the average run lengths of the proposed chart are examined. Furthermore, an Arcsine EWMA Chart is proposed since the average run lengths of the Arcsine EWMA Chart are more reasonable than those of the new EWMA Chart. The Arcsine EWMA Chart is recommended if we are concerned with the proper values of the average run length.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 573 ◽  
Author(s):  
Wibawati ◽  
Muhammad Mashuri ◽  
Purhadi ◽  
Irhamah

In the present paper, we develop a fuzzy bivariate Poisson (FBP) control chart based on a fuzzy c chart. The FBP chart is used to monitor the sum of the nonconformities of each quality characteristic. There are two contributions of this work. First, we propose a new fuzzy parameter estimation to create a triangular fuzzy number (TFN). Second, our control chart is flexible, because we involve the α c u t to measure the level of tightness of inspection. Furthermore, the statistic of FBP is being able to visualise the monitoring process in a graphical form. In addition, the simulation study indicates that the performance of our proposed chart, based on average run length (ARL), is more sensitive than the performance of a conventional bivariate Poisson (BP) chart. Moreover, an illustration example shows that the FBP chart has relatively more sensitive performance compared to the conventional BP chart.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Muhammad Aslam ◽  
G. Srinivasa Rao ◽  
Muhammad Saleem ◽  
Rehan Ahmad Khan Sherwani ◽  
Chi-Hyuck Jun

More recently in statistical quality control studies, researchers are paying more attention to quality characteristics having nonnormal distributions. In the present article, a generalized multiple dependent state (GMDS) sampling control chart is proposed based on the transformation of gamma quality characteristics into a normal distribution. The parameters for the proposed control charts are obtained using in-control average run length (ARL) at specified shape parametric values for different specified average run lengths. The out-of-control ARL of the proposed gamma control chart using GMDS sampling is explored using simulation for various shift size changes in scale parameters to study the performance of the control chart. The proposed gamma control chart performs better than the existing multiple dependent state sampling (MDS) based on gamma distribution and traditional Shewhart control charts in terms of average run lengths. A case study with real-life data from ICU intake to death caused by COVID-19 has been incorporated for the realistic handling of the proposed control chart design.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sandra García-Bustos ◽  
Joseph León ◽  
María Nela Pastuizaca

PurposeThis research proposes a multivariate control chart, whose parameters are optimized using genetic algorithms (GA) in order to accelerate the detection of a change in the vector of means.Design/methodology/approachThis chart is based on a variation of the Hotelling T2 chart using a sampling scheme called generalized multiple dependent state sampling. For the analysis of performances of this chart, the out-of-control average run length (ARL) values were used for different scenarios. In this comparison, it was considered the classic Hotelling T2 chart and the T2 chart using the scheme called multiple dependent state sampling.FindingsIt was observed that the new chart with its optimized parameters is more efficient to detect an out-of-control process. Additionally, a sensitivity analysis was performed, and it was concluded that the best yields are obtained when the change to be considered in the optimization is small. An application in the resolution of a real problem is given.Originality/valueIn this research, a multivariate control chart is proposed based on the Hotelling T2 statistic but adding a sampling scheme. This makes this control chart more efficient than the classic T2 chart because the new chart not only uses the current information of the T2 statistic but also conditions the decision to consider a process as “in- control” on the statistic's previous information. The practitioner can obtain the optimal parameters of this new chart through a friendly program developed by the authors.


Technologies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 69
Author(s):  
Muhammad Mughal ◽  
Muhammad Azam ◽  
Muhammad Aslam

Among the Statistical Process Control (SPC) techniques, control charts are considered to be high weight-age due to their effectiveness in process variation. As the Shewhart’s charts are not that active in monitoring small and moderate process variations, the statisticians have been making efforts to improve the performance of the control chart by introducing several techniques within the tool. These techniques consist of experimenting with different estimators, different sampling selection techniques, and mixed methodologies. The proposed chart is one of the examples of a mixed chart technique that has shown its efficiency in monitoring small variations better than any of the existing techniques in the specific situation of auxiliary information. To show and compare its performance, average run length (ARL) tables and ARL curves have been presented in the article. An industrial example has also been included to show the practical application of the proposed chart in a real scenario.


Sign in / Sign up

Export Citation Format

Share Document