scholarly journals Verifiable Location-Encrypted Spatial Aggregation Computing for Mobile Crowd Sensing

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Kun Niu ◽  
Changgen Peng ◽  
Weijie Tan ◽  
Zhou Zhou ◽  
Yi Xu

Benefiting from the development of smart urban computing, the mobile crowd sensing (MCS) network has emerged as momentous communication technology to sense and collect data. The users upload data for specific sensing tasks, and the server completes the aggregation analysis and submits to the sensing platform. However, users’ privacy may be disclosed, and aggregate results may be unreliable. Those are challenges in the trust computation and privacy protection, especially for sensitive data aggregation with spatial information. To address these problems, a verifiable location-encrypted spatial aggregation computing (LeSAC) scheme is proposed for MCS privacy protection. In order to solve the spatial domain distributed user ciphertext computing, firstly, we propose an enhanced-distance-based interpolation calculation scheme, which participates in delegate evaluator based on Paillier homomorphic encryption. Then, we use aggregation signature of the sensing data to ensure the integrity and security of the data. In addition, security analysis indicates that the LeSAC can achieve the IND-CPA indistinguishability semantic security. The efficiency analysis and simulation results demonstrate the communication and computation overhead of the LeSAC. Meanwhile, we use the real environment sensing data sets to verify availability of proposed scheme, and the loss of accuracy (global RMSE) is only less than 5%, which can meet the application requirements.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Qinghua Chen ◽  
Shengbao Zheng ◽  
Zhengqiu Weng

Mobile crowd sensing has been a very important paradigm for collecting sensing data from a large number of mobile nodes dispersed over a wide area. Although it provides a powerful means for sensing data collection, mobile nodes are subject to privacy leakage risks since the sensing data from a mobile node may contain sensitive information about the sensor node such as physical locations. Therefore, it is essential for mobile crowd sensing to have a privacy preserving scheme to protect the privacy of mobile nodes. A number of approaches have been proposed for preserving node privacy in mobile crowd sensing. Many of the existing approaches manipulate the sensing data so that attackers could not obtain the privacy-sensitive data. The main drawback of these approaches is that the manipulated data have a lower utility in real-world applications. In this paper, we propose an approach called P3 to preserve the privacy of the mobile nodes in a mobile crowd sensing system, leveraging node mobility. In essence, a mobile node determines a routing path that consists of a sequence of intermediate mobile nodes and then forwards the sensing data along the routing path. By using asymmetric encryptions, it is ensured that a malicious node is not able to determine the source nodes by tracing back along the path. With our approach, upper-layer applications are able to access the original sensing data from mobile nodes, while the privacy of the mobile node is not compromised. Our theoretical analysis shows that the proposed approach achieves a high level of privacy preserving capability. The simulation results also show that the proposed approach incurs only modest overhead.


2021 ◽  
Author(s):  
Zhigang Jia ◽  
Weiwei Zhao ◽  
Jie Luo ◽  
Yang Chen ◽  
ChangJing Xu

Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2391 ◽  
Author(s):  
Dan Tao ◽  
Shan Zhong ◽  
Hong Luo

Having an incentive mechanism is crucial for the recruitment of mobile users to participate in a sensing task and to ensure that participants provide high-quality sensing data. In this paper, we investigate a staged incentive and punishment mechanism for mobile crowd sensing. We first divide the incentive process into two stages: the recruiting stage and the sensing stage. In the recruiting stage, we introduce the payment incentive coefficient and design a Stackelberg-based game method. The participants can be recruited via game interaction. In the sensing stage, we propose a sensing data utility algorithm in the interaction. After the sensing task, the winners can be filtered out using data utility, which is affected by time–space correlation. In particular, the participants’ reputation accumulation can be carried out based on data utility, and a punishment mechanism is presented to reduce the waste of payment costs caused by malicious participants. Finally, we conduct an extensive study of our solution based on realistic data. Extensive experiments show that compared to the existing positive auction incentive mechanism (PAIM) and reverse auction incentive mechanism (RAIM), our proposed staged incentive mechanism (SIM) can effectively extend the incentive behavior from the recruiting stage to the sensing stage. It not only achieves being a real-time incentive in both the recruiting and sensing stages but also improves the utility of sensing data.


2019 ◽  
Vol 23 (1) ◽  
pp. 421-452 ◽  
Author(s):  
Yongfeng Wang ◽  
Zheng Yan ◽  
Wei Feng ◽  
Shushu Liu

AbstractThe unprecedented proliferation of mobile smart devices has propelled a promising computing paradigm, Mobile Crowd Sensing (MCS), where people share surrounding insight or personal data with others. As a fast, easy, and cost-effective way to address large-scale societal problems, MCS is widely applied into many fields, e.g., environment monitoring, map construction, public safety, etc. Despite the popularity, the risk of sensitive information disclosure in MCS poses a serious threat to the participants and limits its further development in privacy-sensitive fields. Thus, the research on privacy protection in MCS becomes important and urgent. This paper targets the privacy issues of MCS and conducts a comprehensive literature research on it by providing a thorough survey. We first introduce a typical system structure of MCS, summarize its characteristics, propose essential requirements on privacy on the basis of a threat model. Then, we survey existing solutions on privacy protection and evaluate their performances by employing the proposed requirements. In essence, we classify the privacy protection schemes into four categories with regard to identity privacy, data privacy, attribute privacy, and task privacy. Besides, we review the achievements on privacy-preserving incentives in MCS from four viewpoints of incentive measures: credit incentive, auction incentive, currency incentive, and reputation incentive. Finally, we point out some open issues and propose future research directions based on the findings from our survey.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4219
Author(s):  
Jing Yang ◽  
Jialiang Xu

To collect data efficiently and reliably in Mobile Crowd Sensing (MCS), a Participant Service Ability Aware (PSAA) data collecting mechanism is proposed. First, participants select the best sensing task according to the task complexity and desired reward in the multitasking scenario. Second, the Stackelberg Game model is established based on the mutual choice of participants and platform to maximize their utilities to evaluate the service ability of participants. Finally, participants transmit data to platform directly or indirectly through the best relay and the sensing data from the participants with better service ability is selected to complete sensing tasks accurately and efficiently with the minimum overall reward expense. The numerical results show that the proposed data collection mechanism can maximize the utility of participants and platform, efficiently accomplish sensing tasks and significantly reduce the overall reward expense.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ruyan Wang ◽  
Shiqi Zhang ◽  
Zhigang Yang ◽  
Puning Zhang ◽  
Dapeng Wu ◽  
...  

In mobile crowd sensing (MCS), the cloud as a single sensing platform undertakes a large number of communication tasks, leading to the reduction of sensing task execution efficiency and the risk of loss and leakage of users’ private data. In this paper, we propose a spatial ciphertext aggregation scheme with collaborative verification of fog nodes. Firstly, the cloud and fog collaboration architecture is constructed. Fog nodes are introduced for data validation and slices transmission, reducing computing cost on the sensing platform. Secondly, a multipath transmission method of slice data is proposed, in which the user identity and data are transmitted anonymously by the secret sharing method, and the data integrity is guaranteed by hash chain authentication. Finally, a spatial data aggregation method based on privacy protection is presented. The ciphertext aggregation calculation of the sensing platform is realized through Paillier homomorphic encryption, and the problem of insufficient data coverage in the sensing region is solved by the position-based weight interpolation method. The security analysis demonstrates that the scheme can achieve the expected security goal. The simulation results show the feasibility and effectiveness of the proposed scheme.


Author(s):  
Corrado Loglisci ◽  
Marco Zappatore ◽  
Antonella Longo ◽  
Mario A. Bochicchio ◽  
Donato Malerba

Sign in / Sign up

Export Citation Format

Share Document