scholarly journals Development of Sustainable and Functional Fabrics from Recycled and Nanocomposite Polyester Fibers

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Solomon Addis ◽  
Hermela Ejegu ◽  
Messay Dubale ◽  
Wondwossen Mamuye

Antimicrobial knitted and woven fabrics were developed from recycled polyester (PET) and silver nanocomposite (SNC) fibers. Two different fabrics were produced from two different blend proportions of the fibers. The antimicrobial properties of fabrics were tested against those of the S. aureus (Gram-positive) and E. coli (Gram-negative) bacterial natures, and their yarn properties and hand-related characteristics were investigated. The results show uneven fabrics properties such as irregularity in thickness and SNC-recycled PET fiber ratio increase, and the tensile strength decreases while the NEP number increases. This implies that fabrics made from a blend with higher SNC-recycled PET fiber ratios have higher surface roughness levels, higher bending rigidity, and harder texture. As a consequence, the antimicrobial efficiency of the fabrics was improved as the percentage of SNC increased. The recycled PET fiber within the blended yarn shows a good antimicrobial property (above 90%) observed in all fabrics. The reduction of bacterial colonies was constantly exceeding 90% for both E. coli and S. aureus in all fabric samples.

2019 ◽  
Vol 19 (11) ◽  
pp. 7285-7293 ◽  
Author(s):  
Kuo-Hui Wu ◽  
Yin-Chiung Chang ◽  
Ken-Fa Cheng ◽  
Je-Chuang Wang

An organic–inorganic hybrid antibacterial material based on Ag/AgCl and quaternary ammoniummodified silicate (Ormosil (NR+4 Cl-)) was prepared by sol–gel processes and an in situ reduction method, in which silver nitrate, tetraethoxysilane (TEOS), N-trimethoxysilylpropyl-N,N,Ntrimethylammonium chloride (TMAPS) and N-[3-(trimethoxysilyl)propyl]diethylenetriamine (ATS) acted as precursor, linker and colloidal suspension stabilizer, respectively. The physical properties of the Ormosil (NR+4 Cl-) and Ormosil (NR+4 Cl-)/Ag hybrids were examined using XPS and TGA spectroscopy, the results of which indicated that Ag/AgCl was immobilized in channels by dipolar interactions with the Ormosil (NR+4 Cl-) matrix. Ormosil (NR+4 Cl-) and Ormosil (NR+4 Cl-)/Ag sol solutions were used to functionalize non-woven fabrics by simply immersing the textiles into the dispersions in order to obtain antimicrobial fabrics. The antibacterial effects of the Ormosil/Ag- and Ormosil (NR+4 Cl-)/Ag-modified fabrics against Gram-negative P. aeruginosa and E. coli, and Grampositive S. aureus and B. subtilis, were assessed using the zone of inhibition and the plate-counting method. The antibacterial efficacy was maintained even after 20 laundry cycles. The results indicated that the Ormosil/Ag and Ormosil (NR+4 Cl-)/Ag hybrids are useful as non-leaching agents imparting durable antimicrobial properties to fabrics.


2010 ◽  
Vol 62 (2) ◽  
pp. 393-395
Author(s):  
Khalisanni Khalid ◽  
Hung Kiong

Oils from six Malay medicated oils, used traditionally in the treatment of infectious and septic diseases in humans, were tested for their antimicrobial property. The aim was to evaluate the antimicrobial properties of six Malay medicated oils against certain microbial isolates. Locally available Malay medicated oils were checked for their antimicrobial activities using six species of bacteria: E. coli, Salmonella spp., Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus, Bacillus subtilis and 2 fungi with 1 yeast (Aspergillus niger, Penicillum spp. and Candida albicans). Clove oil showed the highest antibacterial activity followed, respectively, by 'bunga merah', cajaput, nutmeg, lemon grass and 'gamat' oil. Clove oil and lemon grass showed anticandidal activity. The Malay medicated oil studies did not show any antifungal activity. The study shows that Malay medicated oils, like antibiotics, have antimicrobial activities against some microorganisms.


Open Medicine ◽  
2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Pengtao Liu ◽  
Weisheng Meng ◽  
Shuai Wang ◽  
Yonghui Sun ◽  
Muhammad Aqeel Ashraf

Abstract A series of 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) was prepared by the reaction of chitosan with glycidyl trimethyl ammonium chloride. Structure of HACC was characterized by FT IR and 1H NMR spectroscopies, and it was proved that substitution reaction mainly occurs on the N element. Antimicrobial activities of HACC was examined against S. aureus, E. coli, and A. niger. Results indicatd that the inhibitory effects of HACC solutions were varied with HACC concentration, quaternization degrees, pH values, metal ions, and heat treatment. The antimicrobial properties of handsheets prepared from HACC were studied by the inhibition zone method, and the sheets had good antimicrobial properties against S. aureus and E. coli, and low inhibition rate against A. niger.


2019 ◽  
Vol 10 ◽  
pp. 1864-1872
Author(s):  
Prof. Teodora P. Popova

The effect of ionized aqueous solutions (anolytes and catholyte) in the processing of fruits (cherries, morellos, and strawberries) for decontamination has been tested. Freshly prepared analytes and catholyte without the addition of salts were used, as well as stored for 7 months anolytes, prepared with 0.5% NaCl and a combination of 0.5% NaCl and 0.5% Na2CO3. The anolyte prepared with a combination of 0.5% NaCl and 0.5% Na2CO3, as well as the anolyte obtained with 0.5% NaCl, exhibit high antimicrobial activity against the surface microflora of strawberries, cherries, and sour cherries. They inactivate E. coli for 15 minutes. The other species of the fam. Enterobacteriaceae were also affected to the maximum extent, as is the total number of microorganisms, especially in cherries and sour cherries. Even stored for 7 months, they largely retain their antimicrobial properties. Anolyte and catholyte, obtained without the addition of salts, showed a lower effect on the total number of microorganisms, but had a significant effect on Gram-negative bacteria, and especially with regard to the sanitary indicative E. coli.


Author(s):  
K.K. Gupta ◽  
Neha Kumari ◽  
Neha Sinha ◽  
Akruti Gupta

Biogenic synthesis of silver nanoparticles synthesized from Hymenocallis species (Spider Lilly) leaf extract was subjected for investigation of its antimicrobial property against four bacterial species (E. coli, Salmonella sp., Streptococcus sp. & Staphylococcus sp.). The results revealed that synthesized nanoparticles solution very much justify the color change property from initial light yellow to final reddish brown during the synthesis producing a characteristics absorption peak in the range of 434-466 nm. As antimicrobial agents, their efficacy was evaluated by analysis of variance in between the species and among the different concentration of AgNPs solution, which clearly showed that there was significant variation in the antibiotic property between the four different concentrations of AgNPs solution and also among four different species of bacteria taken under studies. However, silver nanoparticles solution of 1: 9 and 1:4 were proved comparatively more efficient as antimicrobial agents against four species of bacteria.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Ofosua Adi-Dako ◽  
Kwabena Ofori-Kwakye ◽  
Samuel Frimpong Manso ◽  
Mariam EL Boakye-Gyasi ◽  
Clement Sasu ◽  
...  

The physicochemical and antimicrobial properties of cocoa pod husk (CPH) pectin intended as a versatile pharmaceutical excipient and nutraceutical were studied. Properties investigated include pH, moisture content, ash values, swelling index, viscosity, degree of esterification (DE), flow properties, SEM, FTIR, NMR, and elemental content. Antimicrobial screening and determination of MICs against test microorganisms were undertaken using agar diffusion and broth dilution methods, respectively. CPH pectin had a DE of 26.8% and exhibited good physicochemical properties. Pectin had good microbiological quality and exhibited pseudoplastic, shear thinning behaviour, and high swelling capacity in aqueous media. The DE, FTIR, and NMR results were similar to those of previous studies and supported highly acetylated low methoxy pectin. CPH pectin was found to be a rich source of minerals and has potential as a nutraceutical. Pectin showed dose-dependent moderate activity against gram positive and gram negative microorganisms but weak activity against Listeria spp. and A. niger. The MICs of pectin ranged from 0.5 to 4.0 mg/mL, with the highest activity against E. coli and S. aureus (MIC: 0.5–1.0 mg/mL) and the lowest activity against A. niger (MIC: 2.0–4.0 mg/mL). The study has demonstrated that CPH pectin possesses the requisite properties for use as a nutraceutical and functional pharmaceutical excipient.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 92
Author(s):  
Kaja Kupnik ◽  
Mateja Primožič ◽  
Željko Knez ◽  
Maja Leitgeb

Nowadays, there are many commercial products from natural resources on the market, but they still have many additives to increase their biological activities. On the other hand, there is particular interest in natural sources that would have antimicrobial properties themselves and would inhibit the growth and the reproduction of opportunistic microorganisms. Therefore, a comparative antimicrobial study of natural samples of aloe and its commercial products was performed. Qualitative and quantitative determination of antimicrobial efficiency of Aloe arborescens and Aloe barbadensis and its commercial products on fungi, Gram-negative, and Gram-positive bacteria was performed. Samples exhibited antimicrobial activity and slowed down the growth of all tested microorganisms. Research has shown that natural juices and gels of A. arborescens and A. barbadensis are at higher added concentrations comparable to commercial aloe products, especially against microbial cultures of Bacillus cereus, Candida albicans, and Pseudomonas aeruginosa, whose growths were completely inhibited at a microbial concentration of 600 μg/mL. Of particular importance are the findings of the good antimicrobial efficacy of fresh juice and gel of A. arborescens on tested microorganisms, which is less known and less researched. These results show great potential of A. arborescens for further use in medicine, cosmetics, food, and pharmaceutical industries.


Coatings ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 164 ◽  
Author(s):  
Xiakeer Saitaer ◽  
Noor Sanbhal ◽  
Yansha Qiao ◽  
Yan Li ◽  
Jing Gao ◽  
...  

Mesh infection is a major complication of hernia surgery after polypropylene (PP) mesh implantation. Modifying the PP mesh with antibacterial drugs is an effective way to reduce the chance of infection, but the hydrophobic characteristic of PP fibers has obstructed the drug adhesion. Therefore, to prepare antimicrobial PP mesh with a stable drug coating layer and to slow the drug release property during the hernia repair process has a great practical meaning. In this work, PP meshes were coated by bio-inspired polydopamine (PDA), which can load and release levofloxacin. PP meshes were activated with cold oxygen plasma and then plasma activated PP fibers were coated with PDA. The PDA coated meshes were further soaked in levofloxacin. The levofloxacin loaded PP meshes demonstrate excellent antimicrobial properties for 6 days and the drug release has lasted for at least 24 h. Moreover, a control PP mesh sample without plasma treatment was also prepared, after coating with PDA and loading levofloxacin. The antimicrobial property was sustained only for two days. The maximum inhibition zone of PDA coated meshes with and without plasma treatment was 12.5 and 9 mm, respectively. On all accounts, the modification strategy can facilely lead to long-term property of infection prevention.


Drug Research ◽  
2020 ◽  
Author(s):  
Pinki Yadav ◽  
Kashmiri Lal ◽  
Ashwani Kumar

AbstractThe in vitro antimicrobial properties of some chalcones (1a–1c ) and chalcone tethred 1,4-disubstituted 1,2,3-triazoles (2a–2u) towards different microbial strains viz. Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger and Candida albicans are reported. Compounds 2g and 2u exhibited better potency than the standard Fluconazole with MIC values of 0.0063 µmol/mL and 0.0068 µmol/mL, respectively. Furthermore, molecular docking was performed to investigate the binding modes of two potent compounds 2q and 2g with E. coli topoisomerase II DNA gyrase B and C. albicans lanosterol 14α-demethylase, respectively. Based on these results, a statistically significant quantitative structure activity relationship (QSAR) model was successfully summarized for antibacterial activity against B. subtilis.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Silvia Matiacevich ◽  
Natalia Riquelme ◽  
María Lidia Herrera

Alginate from algal biomass is used as edible film and the incorporation of antimicrobial agents improves its performance to increase the shelf-life of fresh foods. However, environmental conditions and intrinsic properties of films influence their release. The aim of this study was to investigate the effect of the concentration and type of encapsulating agent and pH of emulsions on the physical and antimicrobial properties of alginate-carvacrol films. Films containing alginate, carvacrol as antimicrobial agent, and Tween 20 or trehalose (0.25 and 0.75% w/w) as encapsulating agents were obtained from suspensions at pH 4 and pH 8. Physical characterization of emulsions and films and antimicrobial properties (E. coliandB. cinerea) was evaluated. Results showed that droplets size depended on trehalose concentration, but emulsion stability depended on pH and type of encapsulating agent, being more stable samples with trehalose at pH 4. Although films with Tween 20 presented the highest opacity, they showed the best antimicrobial properties at initial time; however, during storage time, they lost their activity before samples with trehalose and relative humidity (RH) was the principal factor to influence their release. Therefore, sample formulated with 0.25% trehalose at pH 4 and stored at 75% RH had the best potential as edible film for fresh fruits.


Sign in / Sign up

Export Citation Format

Share Document