scholarly journals Maximum Likelihood Estimation of Parameters for Advanced Continuously Reinforced Concrete Pavement (CRCP) Punchout Calibration Model

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Liangliang Chen ◽  
Feng Zhang ◽  
Changjun Zhou

Pavement performance prediction is the essential part of the pavement design, which is very important for highway agencies for the purpose of budget allocating. This study introduces a model of local calibration for punchout, which is the major structural distress of continuously reinforced concrete pavement (CRCP). It is assumed that the number of equivalent single axle loads’ (ESALs) leads to punchout follows a Weibull distribution. The parameters of Weibull distribution were estimated by maximum likelihood estimation (MLE). Additionally, an approach of estimating the initial value of the parameters was also presented before applying the Newton method for solving the likelihood equations. The regression result was found to fit the performance-monitoring data from LTPP very well. The proposed calibration model is capable of describing the punchout and can be employed to predict the failure rate and reliability of CRCP in the pavement design and the arrangement of rehabilitation activities.

2022 ◽  
Vol 7 (2) ◽  
pp. 2820-2839
Author(s):  
Saurabh L. Raikar ◽  
◽  
Dr. Rajesh S. Prabhu Gaonkar ◽  

<abstract> <p>Jaya algorithm is a highly effective recent metaheuristic technique. This article presents a simple, precise, and faster method to estimate stress strength reliability for a two-parameter, Weibull distribution with common scale parameters but different shape parameters. The three most widely used estimation methods, namely the maximum likelihood estimation, least squares, and weighted least squares have been used, and their comparative analysis in estimating reliability has been presented. The simulation studies are carried out with different parameters and sample sizes to validate the proposed methodology. The technique is also applied to real-life data to demonstrate its implementation. The results show that the proposed methodology's reliability estimates are close to the actual values and proceeds closer as the sample size increases for all estimation methods. Jaya algorithm with maximum likelihood estimation outperforms the other methods regarding the bias and mean squared error.</p> </abstract>


2019 ◽  
Vol 31 (4) ◽  
pp. 545-552
Author(s):  
Jason K. Freels ◽  
Daniel A. Timme ◽  
Joseph J. Pignatiello ◽  
Richard L. Warr ◽  
Raymond R. Hill

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Fan Yang ◽  
Hu Ren ◽  
Zhili Hu

The maximum likelihood estimation is a widely used approach to the parameter estimation. However, the conventional algorithm makes the estimation procedure of three-parameter Weibull distribution difficult. Therefore, this paper proposes an evolutionary strategy to explore the good solutions based on the maximum likelihood method. The maximizing process of likelihood function is converted to an optimization problem. The evolutionary algorithm is employed to obtain the optimal parameters for the likelihood function. Examples are presented to demonstrate the proposed method. The results show that the proposed method is suitable for the parameter estimation of the three-parameter Weibull distribution.


Sign in / Sign up

Export Citation Format

Share Document