Super
H
-Antimagic Total Covering for Generalized Antiprism and Toroidal Octagonal Map
Let G be a graph and H ⊆ G be subgraph of G . The graph G is said to be a , d - H antimagic total graph if there exists a bijective function f : V H ∪ E H ⟶ 1,2,3 , … , V H + E H such that, for all subgraphs isomorphic to H , the total H weights W H = W H = ∑ x ∈ V H f x + ∑ y ∈ E H f y forms an arithmetic sequence a , a + d , a + 2 d , … , a + n − 1 d , where a and d are positive integers and n is the number of subgraphs isomorphic to H . An a , d - H antimagic total labeling f is said to be super if the vertex labels are from the set 1,2 , … , | V G . In this paper, we discuss super a , d - C 3 -antimagic total labeling for generalized antiprism and a super a , d - C 8 -antimagic total labeling for toroidal octagonal map.