scholarly journals A Robust Context-Based Deep Learning Approach for Highly Imbalanced Hyperspectral Classification

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Juan F. Ramirez Rochac ◽  
Nian Zhang ◽  
Lara A. Thompson ◽  
Tolessa Deksissa

Hyperspectral imaging is an area of active research with many applications in remote sensing, mineral exploration, and environmental monitoring. Deep learning and, in particular, convolution-based approaches are the current state-of-the-art classification models. However, in the presence of noisy hyperspectral datasets, these deep convolutional neural networks underperform. In this paper, we proposed a feature augmentation approach to increase noise resistance in imbalanced hyperspectral classification. Our method calculates context-based features, and it uses a deep convolutional neuronet (DCN). We tested our proposed approach on the Pavia datasets and compared three models, DCN, PCA + DCN, and our context-based DCN, using the original datasets and the datasets plus noise. Our experimental results show that DCN and PCA + DCN perform well on the original datasets but not on the noisy datasets. Our robust context-based DCN was able to outperform others in the presence of noise and was able to maintain a comparable classification accuracy on clean hyperspectral images.

Author(s):  
Jwalin Bhatt ◽  
Khurram Azeem Hashmi ◽  
Muhammad Zeshan Afzal ◽  
Didier Stricker

In any document, graphical elements like tables, figures, and formulas contain essential information. The processing and interpretation of such information require specialized algorithms. Off-the-shelf OCR components cannot process this information reliably. Therefore, an essential step in document analysis pipelines is to detect these graphical components. It leads to a high-level conceptual understanding of the documents that makes digitization of documents viable. Since the advent of deep learning, the performance of deep learning-based object detection has improved many folds. In this work, we outline and summarize the deep learning approaches for detecting graphical page objects in the document images. Therefore, we discuss the most relevant deep learning-based approaches and state-of-the-art graphical page object detection in document images. This work provides a comprehensive understanding of the current state-of-the-art and related challenges. Furthermore, we discuss leading datasets along with the quantitative evaluation. Moreover, it discusses briefly the promising directions that can be utilized for further improvements.


2021 ◽  
Vol 7 ◽  
pp. e495
Author(s):  
Saleh Albahli ◽  
Hafiz Tayyab Rauf ◽  
Abdulelah Algosaibi ◽  
Valentina Emilia Balas

Artificial intelligence (AI) has played a significant role in image analysis and feature extraction, applied to detect and diagnose a wide range of chest-related diseases. Although several researchers have used current state-of-the-art approaches and have produced impressive chest-related clinical outcomes, specific techniques may not contribute many advantages if one type of disease is detected without the rest being identified. Those who tried to identify multiple chest-related diseases were ineffective due to insufficient data and the available data not being balanced. This research provides a significant contribution to the healthcare industry and the research community by proposing a synthetic data augmentation in three deep Convolutional Neural Networks (CNNs) architectures for the detection of 14 chest-related diseases. The employed models are DenseNet121, InceptionResNetV2, and ResNet152V2; after training and validation, an average ROC-AUC score of 0.80 was obtained competitive as compared to the previous models that were trained for multi-class classification to detect anomalies in x-ray images. This research illustrates how the proposed model practices state-of-the-art deep neural networks to classify 14 chest-related diseases with better accuracy.


Methods ◽  
2018 ◽  
Vol 151 ◽  
pp. 41-54 ◽  
Author(s):  
Nicholas Cummins ◽  
Alice Baird ◽  
Björn W. Schuller

Author(s):  
Alex Dexter ◽  
Spencer A. Thomas ◽  
Rory T. Steven ◽  
Kenneth N. Robinson ◽  
Adam J. Taylor ◽  
...  

AbstractHigh dimensionality omics and hyperspectral imaging datasets present difficult challenges for feature extraction and data mining due to huge numbers of features that cannot be simultaneously examined. The sample numbers and variables of these methods are constantly growing as new technologies are developed, and computational analysis needs to evolve to keep up with growing demand. Current state of the art algorithms can handle some routine datasets but struggle when datasets grow above a certain size. We present a training deep learning via neural networks on non-linear dimensionality reduction, in particular t-distributed stochastic neighbour embedding (t-SNE), to overcome prior limitations of these methods.One Sentence SummaryAnalysis of prohibitively large datasets by combining deep learning via neural networks with non-linear dimensionality reduction.


2021 ◽  
Vol 13 (22) ◽  
pp. 4599
Author(s):  
Félix Quinton ◽  
Loic Landrieu

While annual crop rotations play a crucial role for agricultural optimization, they have been largely ignored for automated crop type mapping. In this paper, we take advantage of the increasing quantity of annotated satellite data to propose to model simultaneously the inter- and intra-annual agricultural dynamics of yearly parcel classification with a deep learning approach. Along with simple training adjustments, our model provides an improvement of over 6.3% mIoU over the current state-of-the-art of crop classification, and a reduction of over 21% of the error rate. Furthermore, we release the first large-scale multi-year agricultural dataset with over 300,000 annotated parcels.


2021 ◽  
Author(s):  
Ranit Karmakar ◽  
Saeid Nooshabadi

Abstract Colon polyps, small clump of cells on the lining of the colon can lead to Colorectal cancer (CRC), one of the leading types of cancer globally. Hence, early detection of these polyps is crucial in the prevention of CRC. This paper proposes a lightweight deep learning model for colorectal polyp segmentation that achieved state-of-the-art accuracy while significantly reducing the model size and complexity. The proposed deep learning autoencoder model employs a set of state-of-the-art architectural blocks and optimization objective functions to achieve the desired efficiency. The model is trained and tested on five publicly available colorectal polyp segmentation datasets (CVC-ClinicDB, CVC-ColonDB, EndoScene, Kvasir, and ETIS). We also performed ablation testing on the model to test various aspects of the autoencoder architecture. We performed the model evaluation using most of the common image segmentation metrics. The backbone model achieved a dice score of 0.935 on the Kvasir dataset and 0.945 on the CVC-ClinicDB dataset improving the accuracy by 4.12% and 5.12% respectively over the current state-of-the-art network, while using 88 times fewer parameters, 40 times less storage space, and being computationally 17 times more efficient. Our ablation study showed that the addition of ConvSkip in the autoencoder slightly improves the model’s performance but it was not significant (p-value=0.815).


2020 ◽  
Author(s):  
Muhammad Saqib ◽  
Saeed Anwar ◽  
Abbas Anwar ◽  
Lars petersson ◽  
Michael Blumenstein

The COVID-19 is a highly contagious viral infection which played havoc on everyone's life in many different ways. According to the world health organization and scientists, more testing potentially helps governments and disease control organizations in containing the spread of the virus. The use of chest radiographs is one of the early screening tests to determine the onset of disease, as the infection affects the lungs severely. This study will investigate and automate the process of testing by using state-of-the-art CNN classifiers to detect the COVID19 infection. However, the viral could of many different types; therefore, we only regard for COVID19 while the other viral infection types are treated as non-COVID19 in the radiographs of various viral infections. The classification task is challenging due to the limited number of scans available for COVID19 and the minute variations in the viral infections. We aim to employ current state-of-the-art CNN architectures, compare their results, and determine whether deep learning algorithms can handle the crisis appropriately. All trained models are available at https://github.com/saeed-anwar/COVID19-Baselines


2020 ◽  
Vol 10 (8) ◽  
pp. 2688 ◽  
Author(s):  
Raphael Gries ◽  
Claudia Sala ◽  
Jan Rybniker

Despite global efforts to contain tuberculosis (TB), the disease remains a leading cause of morbidity and mortality worldwide, further exacerbated by the increased resistance to antibiotics displayed by the tubercle bacillus Mycobacterium tuberculosis. In order to treat drug-resistant TB, alternative or complementary approaches to standard anti-TB regimens are being explored. An area of active research is represented by host-directed therapies which aim to modulate the host immune response by mitigating inflammation and by promoting the antimicrobial activity of immune cells. Additionally, compounds that reduce the virulence of M. tuberculosis, for instance by targeting the major virulence factor ESX-1, are being given increased attention by the TB research community. This review article summarizes the current state of the art in the development of these emerging therapies against TB.


2018 ◽  
Vol 10 (9) ◽  
pp. 88 ◽  
Author(s):  
Vasileios Gkioulos ◽  
Håkon Gunleifsen ◽  
Goitom Weldehawaryat

Software Defined Networking (SDN) is an evolving network architecture paradigm that focuses on the separation of control and data planes. SDN receives increasing attention both from academia and industry, across a multitude of application domains. In this article, we examine the current state of obtained knowledge on military SDN by conducting a systematic literature review (SLR). Through this work, we seek to evaluate the current state of the art in terms of research tracks, publications, methods, trends, and most active research areas. Accordingly, we utilize these findings for consolidating the areas of past and current research on the examined application domain, and propose directions for future research.


Sign in / Sign up

Export Citation Format

Share Document