scholarly journals Newly Synthesized Micro-Nano Transition Metal Complexes of Hexadecanoic Acid as Anti-Microbial Agents: Synthesis, Characterization, and Biological Investigations

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Kavitha Govindarajan ◽  
Vijayarohini Parasuraman ◽  
Parasuraman Perumalswamy Sekar ◽  
Ilhami Colak ◽  
Balkew Zewge Hailemeskel

The synthesis of several metal complexes of d-block elements of hexadecanoic acid (palmitic acid) and its antimicrobial activity was reported in this study. UV-Vis and FT-IR spectroscopy studies were used to characterize and confirm the produced metal complexes by the shift in the absorbance and the formation of M-O linkage. The X-ray diffraction method was mainly used to examine the crystallographic faces of the complexes based on the transition metals. Thermal gravimetric investigation revealed that all metal palmitate complexes had high thermal stability in the range of 250-300°C. The metal complexes of hexadecanoic acid were examined for microbicidal activity against diverse bacterial strains and fungal pathogens using the agar well diffusion method. The copper palmitate complex presented excellent antibacterial activity among the other metal complexes. These outcomes suggest of using fatty acid metal complexes as a suitable candidate in several biomedical applications.

2021 ◽  
Vol 6 (4) ◽  
pp. 243-249
Author(s):  
B.R. Chaitanya Kumar ◽  
K. Sudhakar Babu ◽  
J. Latha

A pyridine derivative 2-((E)-1-(2-hydrazinyl-4-methyl-6-phenyl-pyridine-3-carboyl)ethyl)pyridine-4- carbonitrile (CPHPC) ligand and its 3d-metal(II) complexes has been synthesized (where [M = Co(II), Ni(II) and Cu(II)]. The physico-chemical, analytical data, UV-Vis, FT-IR, 1H NMR and ESR spectrum methods were used to characterize all of the synthesized complexes. Spectral investigations of metal(II) complexes revealed that the metal ion is surrounded by an octahedral geometry. Low conductance values indicated that the metal(II) complexes behave as non-electrolyte. The cytotoxic activity on lung cancer cell lines and hepatic cancer cell lines A549 and HepG2, respectively, with the ligand and their metal complexes were tested with MTT assay. The ligand and its metal complexes were tested for diverse harmful bacterial strains using the agar well diffusion method on Gram-negative bacteria such as Pseudomonas desmolyticum, Escherichia coli and Klebsiella aerogenes, as well as Gram-positive bacteria Staphylococcus aureus.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
K. Savithri ◽  
B. C. Vasantha Kumar ◽  
H. K. Vivek ◽  
H. D. Revanasiddappa

A bidentate (N- and O-) imine-based ligand (L1) and its metal complexes of types [CuII(L1)2] (C1), [CuII(L1)(Phen)] (C2), [CoIII(L1)2] (C3), and [CoIII(L1)(Phen)] (C4) (L1 = 2-((E)-(6-fluorobenzo[d]thiazol-2-ylimino)methyl)-4-chlorophenol and phen = 1,10-phenanthroline) were synthesized as potential chemotherapeutic drug candidates. The prepared complexes were structurally characterized by spectral techniques (NMR, FT-IR, LC-MS, EPR, and electronic absorption), thermogravimetric analysis (TGA/DTA), magnetic moment, and CHNO elemental analysis. Spectroscopic studies suggested the distorted octahedral structure for all complexes. In vitro bioassay studies include binding and nuclease activities of the ligand and its complexes with target calf thymus- (CT-) DNA were carried out by employing UV-Vis, fluorescence spectroscopy, viscosity, and gel electrophoresis techniques. The extent of binding propensity was determined quantitatively by Kb and Ksv values which revealed a higher binding affinity for C2 and C4 as compared to C1 and C3. In addition, the scavenging superoxide anion free radical (O∙-2) activity of metal complexes was determined by nitroblue tetrazolium (NBT) light reduction assay. Molecular docking studies with DNA and SOD enzyme were also carried out on these compounds. The antimicrobial study has shown that all the compounds are potential antibacterial agents against Gram-negative bacterial strains and better antifungal agents with respect to standard drugs used.


2019 ◽  
Vol 31 (9) ◽  
pp. 1905-1912 ◽  
Author(s):  
Kummara Srinivasulu ◽  
Katreddi Hussain Reddy ◽  
K. Anuja ◽  
D. Dhanalakshmi ◽  
Golla Ramesh

Metal complexes having the composition M(Bipy)Cl2 (where, M = Cu(II), Ni(II) and Co(II); Bipy = 2,2-bipyridyl) are reacted with 2-acetylthiophene thiosemicarbazone (ATT) to produce heteroleptic transition metal complexes with molecular formula [M(Bipy)ATT]. The complexes are characterized by mass spectra, molar conductivity, infrared and electronic spectra. Electrochemical behaviour of these metal complexes was investigated by cyclic voltammetric studies. The metal complexes show quasi reversible cyclic voltammetric responses for the Cu(II)/Cu(I) couple. The binding properties of these complexes with calf-thymus DNA have been investigated by using absorption spectrophotometry. Metal complexes are screened for their antibacterial activity by using agar well diffusion method against pathogenic bacterial strains viz. Escherichia coli and Staphylococcus aureus. Antibacterial activity of the present complexes are comparable with the activity of ciprofloxacin. The Cu(Bipy)Cl2 complex inhibits bacteria more strongly than any other complex. The Ni(Bipy)ATT complex shows more activity than the parent complex, Ni(Bipy)Cl2.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
K. Rajesh ◽  
B. Milton Boaz ◽  
P. Praveen Kumar

Single crystals of pure and Lanthanum doped L-Alanine Tartrate were grown by slow evaporation method. The cell parameters were determined using single crystal X-ray diffraction method. To improve the physical properties of the LAT crystal, Lanthanum dopant was added by 2 mol%. ICP studies confirm the presence of Lanthanum in the grown LAT crystal. Transparency range of the crystal was determined using UV-VIS-NIR spectrophotometer. The functional groups of pure and doped LAT crystals were analyzed by FT-IR spectroscopy. Using Vickers microhardness tester, mechanical strength of the material was found. Dielectric studies of pure and doped LAT single crystals were carried out. The doped LAT crystal is found to have efficiency higher than that of pure LAT crystal.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
F. K. Ommenya ◽  
E. A. Nyawade ◽  
D. M. Andala ◽  
J. Kinyua

A new series of Mn (II), Co (II), Ni (II), Cu (II), and Zn (II) complexes of the Schiff base ligand, 4-chloro-2-{(E)-[(4-fluorophenyl)imino]methyl}phenol (C13H9ClFNO), was synthesized in a methanolic medium. The Schiff base was derived from the condensation reaction of 5-chlorosalicylaldehyde and 4-fluoroaniline at room temperature. Elemental analysis, FT-IR, UV-Vis, and NMR spectral data, molar conductance measurements, and melting points were used to characterize the Schiff base and the metal complexes. From the elemental analysis data, the metal complexes formed had the general formulae [M(L)2(H2O)2], where L = Schiff base ligand (C13H9ClFNO) and M = Mn, Co, Ni, Cu, and Zn. On the basis of FT-IR, electronic spectra, and NMR data, “O” and “N” donor atoms of the Schiff base ligand participated in coordination with the metal (II) ions, and thus, a six coordinated octahedral geometry for all these complexes was proposed. Molar conductance studies on the complexes indicated they were nonelectrolytic in nature. The Schiff base ligand and its metal (II) complexes were tested in vitro to evaluate their bactericidal activity against Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus typhi) using the disc diffusion method. The antibacterial evaluation results revealed that the metal (II) complexes exhibited higher antibacterial activity than the free Schiff base ligand.


2012 ◽  
Vol 8 ◽  
pp. 33-39 ◽  
Author(s):  
Bikash Baral ◽  
Geeta Shrestha Vaidya ◽  
Nabin Bhattarai

Water hyacinth (Eichhornia crassipes) is an invasive aquatic weed causing serious threats to water ecosystems throughout the world. Recently, considerable attention has been given at harvesting the plant for practical uses. An experiment on the bioactivity of water hyacinth was conducted using the soxhlet extraction (hot method) and cold percolation method in chloroform and ethanol in order to evaluate the antimicrobial properties of the plant. Plant samples were also analyzed for the presence of major pharmacologically active compounds. The antimicrobial assay was performed using well diffusion method against nine different clinical bacterial strains and six phytopathogenic fungal strains. The chloroform hot extract showed activity against 22.22% (Zone of Inhibition, ZOI < 13mm) bacteria and 66.66% (ZOI < 12mm) fungi; while the cold extract showed activity against 50% (ZOI < 13mm) fungi, but no activity against bacteria. Similarly, the ethanol hot extract showed activity against 77.77% (ZOI < 19mm) bacteria and 66.66% (ZOI < 20mm) fungi, while the cold extract showed activity against 77.77% (ZOI < 10mm) bacteria and 50% (ZOI < 14mm) fungi. The ethanolic hot and cold extract proved to be far better than the chloroform fraction showing more antibacterial activity, while they share the same value and possess same effectiveness against the different fungi. Chemical analysis indicated that the major components in these extracts were saponins, polyoses, alkaloid salts, and reducing compounds. The present study showed that the devastating aquatic weed, with strong antimicrobial potentials and presence of biologically active phytochemicals, may be useful for developing alternative compounds to treat infectious diseases caused by bacterial and fungal pathogens. doi: http://dx.doi.org/10.3126/botor.v8i0.5556 Botanica Orientalis – Journal of Plant Science (2011) 8: 33-39


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Kui-Rong Ma ◽  
Chun-Li Wei ◽  
Yu Zhang ◽  
Yu-He Kan ◽  
Ming-Hui Cong ◽  
...  

The two examples of alkaline-earth M(II)-phosphonate coordination polymers, [Ba2(L)(H2O)9]·3H2O (1) and [Mg1.5(H2O)9]·(L-H2)1.5·6H2O (2) (H4L = H2O3PCH2N(C4H8)NCH2PO3H2),N,N′-piperazinebis(methylenephosphonic acid), (L-H2= O3PH2CHN(C4H8)NHCH2PO3) have been hydrothermally synthesized and characterized by elemental analysis, FT-IR, PXRD, TG-DSC, and single-crystal X-ray diffraction. Compound1possesses a 2D inorganic-organic alternate arrangement layer structure built from 1D inorganic chains through the piperazine bridge, in which the ligand L−4shows two types of coordination modes reported rarely at the same time. In1, both crystallographic distinct Ba(1) and Ba(2) ions adopt 8-coordination two caps and 9-coordination three caps triangular prism geometry structures, respectively. Compound2possesses a zero-dimensional mononuclear structure with two crystallographic distinct Mg(II) ions. Free metal cations  [MgO6]n2+and uncoordinated anions(L-H2)n2-are joined together by static electric force. Results of photoluminescent measurement indicate three main emission bands centered at 300 nm, 378.5 nm, and 433 nm for1and 302 nm, 378 nm, and 434.5 nm for2(λex=235 nm), respectively. The high energy emissions could be derived from the intraligandπ∗-ntransition stations ofH4L(310 nm and 382 nm,λex=235 nm), while the low energy emission (>400 nm) of1-2may be due to the coordination effect with metal(II) ions.


Author(s):  
R. Govindharaju ◽  
P. Durairaj ◽  
T. Maruthavanan ◽  
M. Marlin Risana ◽  
T. Ramachandramoorthy

Cr(III) and Mn(II) metal complexes of Schiff base ligand derived from phenylacetylurea condensed with salicylaldehyde (SBPS) and thiocyanate(SCN-) ion were synthesized by using microwave irradiation. Microwave assisted synthesis gives high yield of the complexes within a very short time. The molecular formulae and the geometry of the complexes have been deduced from elemental analysis, metal estimation, electrical conductance, magnetic moment, electronic spectra, FT- IR, Far IR spectra, cyclic voltammetry, thermal analysis and powder-XRD techniques. The molar conductance values indicate that the complexes are non-electrolyte (1:0) type. FT-IR spectra show that Schiff base and thiocyanate ion are coordinated to the metal ion in a monodentate manner. The electronic spectra and the magnetic moment indicate the geometry of the complexes is found to be octahedral. The antimicrobial activities of ligands and their Cr(III) and Mn(II) complexes were studied against the microorganisms, viz., E. coli, Klebsiella Pneumonia, P. aeruginosa, S. aureus, Bacillus cereus, Aspergillus flavus, Aspergillus niger, Aspergillus oryzae, Aspergillus sojae and Candida albicans by agar well diffusion method. The complexes show moderate activity against the bacteria and enhanced activity against the fungi as compared to free SBPS ligand. The free radical scavenging activity of the complexes and the ligands has been determined by measuring their interaction with the stable free radical, DPPH. The complexes have larger antioxidant activity as compared to the ligand. DNA-binding properties have been studied by fluorescence-emissions method. The results suggest that the complexes strongly bind to DNA because of metal complexes are well-known to speed up the drug action and the ability of a therapeutic agent which can frequently be enhanced upon coordination with a metal ion.


Author(s):  
MOUSHUMI BAIDYA ◽  
ANBU J. ◽  
SEMIMUL AKHTAR ◽  
SIPRA SARKAR ◽  
SUDIP KUMAR MANDAL

Objective: The study was undertaken to evaluate the antimicrobial activity of ethanolic extract of polyherbal seed shells. Methods: The seed of Momordica charantia, Manikara zapota, Emblica officinalis, Syzygium cumini, collected from the local market, Mathikere, Bangalore, India. Ethanolic extract was prepared from the dried seed powders using solvent 80% ethanol. Initially, antimicrobial activity of the extract was performed by agar well diffusion method against two bacterial strains (Escherichia coli, and Staphylococcus aureus) and two fungal pathogens (Aspergillus niger and Candida albicans). Results: The antimicrobial study results revealed that the test extract was strongly inhibited the growth of bacteria, whereas it was not inhibited the growth of fungal organisms used in this study. Conclusion: The results suggest that ethanolic extract of seeds possess antimicrobial properties which can be used for the treatment of infectious diseases.


Sign in / Sign up

Export Citation Format

Share Document