scholarly journals Brain Tumor Detection and Classification by MRI Using Biologically Inspired Orthogonal Wavelet Transform and Deep Learning Techniques

2022 ◽  
Vol 2022 ◽  
pp. 1-18
Author(s):  
Muhammad Arif ◽  
F. Ajesh ◽  
Shermin Shamsudheen ◽  
Oana Geman ◽  
Diana Izdrui ◽  
...  

Radiology is a broad subject that needs more knowledge and understanding of medical science to identify tumors accurately. The need for a tumor detection program, thus, overcomes the lack of qualified radiologists. Using magnetic resonance imaging, biomedical image processing makes it easier to detect and locate brain tumors. In this study, a segmentation and detection method for brain tumors was developed using images from the MRI sequence as an input image to identify the tumor area. This process is difficult due to the wide variety of tumor tissues in the presence of different patients, and, in most cases, the similarity within normal tissues makes the task difficult. The main goal is to classify the brain in the presence of a brain tumor or a healthy brain. The proposed system has been researched based on Berkeley’s wavelet transformation (BWT) and deep learning classifier to improve performance and simplify the process of medical image segmentation. Significant features are extracted from each segmented tissue using the gray-level-co-occurrence matrix (GLCM) method, followed by a feature optimization using a genetic algorithm. The innovative final result of the approach implemented was assessed based on accuracy, sensitivity, specificity, coefficient of dice, Jaccard’s coefficient, spatial overlap, AVME, and FoM.

2021 ◽  
Author(s):  
Pitchai R ◽  
Supraja P ◽  
Razia Sulthana A ◽  
Veeramakali T

Abstract Segmentation of brain tumors is a daunting process comprising the delineation of heterogeneous cancerous tissues and diffuse types in anatomical representations of the brain. Deep learning techniques have recently made important strides in the segmentation of brain tumors. However, owing to the irregularity of the tumor, most of the deep learning-based segmentation techniques are not used directly for tumor detection. Although recent studies are capable of addressing the irregularity issue and retaining permutation invariance, many approaches struggle to catch the valuable high-dimensional local features of finer resolution. Inspired by the fuzzy learning methods and an analysis of the shortcomings of existing methods, an automated fuzzy neighborhood learning-based 3D segmentation technique has been proposed for the detection of cerebrum tumors in 3D images. In this technique, the fuzzy neighborhood function is deeply integrated with the proposed network architecture. This technique has been evaluated on BRATS 2013dataset. The simulation results show that the proposed brain tumor detection technique is superior to other methods in the diagnosis of brain tumors with the dice coefficient of 0.85 and the Jaccard index of 0.74.


Author(s):  
K.Ganga Durga Prasad ◽  
A.J.N. Murthy ◽  
G Narasimha ◽  
New Sinha

The brain tumors, are the maximum not unusual place and threatening disease, main to a totally quick lifestyles of their maximum grade. Thus, remedy making plans is a key level to enhance the lifestyles of sufferers. Normally, distinct photo strategies which includes CT, MRI and ultrasound photo are used to hit upon the tumor in a brain. on this approach MRI photos are used to diagnose brain tumor guide type of tumor vs non-tumor is a tough challenge for radiologosts. we gift an approach for detection and type of tumors with inside the brain. The computerized brain tumor type could be very hard challenge in brain tumor. In this approach, computerized brain tumor detection is executedwith the aid of usingthe use of Convolutional Neural Networks (CNN) type.Our proposed automation gadgetcould take an MRI and examine it to locate bengin (non-cancerous) or malignant (cancerous).


Author(s):  
Tariq Sadad ◽  
Amjad Rehman ◽  
Asim Munir ◽  
Tanzila Saba ◽  
Usman Tariq ◽  
...  

Brain tumor detection from MRI images is a challenging process due to high diversity in the tumor pixels of different peoples. Automatic detection has got wide spread acclaim because the manual detection by experts is time consuming and prone to error in judgment. Due to its high mortality rate, detection of tumor automatically is a new emerging technique in bio medical imaging. Here we present a review of few methods from simple thresholding to advanced deep learning methods for segmentation of tumor from MRI data. The segmentation of tumor methods is classified to image segmentation using gray level processing, machine learning and deep learning. The results of various methods are compared to find the best methods available. As medical imaging methods have improving day by day this review will help to understand emerging trends in brain tumor detection.


2020 ◽  
Vol 17 (4) ◽  
pp. 1925-1930
Author(s):  
Ambeshwar Kumar ◽  
R. Manikandan ◽  
Robbi Rahim

It’s a new era technology in the field of medical engineering giving awareness about the various healthcare features. Deep learning is a part of machine learning, it is capable of handling high dimensional data and is efficient in concentrating on the right features. Tumor is an unbelievably complex disease: a multifaceted cell has more than hundred billion cells; each cell acquires mutation exclusively. Detection of tumor particles in experiment is easily done by MRI or CT. Brain tumors can also be detected by MRI, however, deep learning techniques give a better approach to segment the brain tumor images. Deep Learning models are imprecisely encouraged by information handling and communication designs in biological nervous system. Classification plays an significant role in brain tumor detection. Neural network is creating a well-organized rule for classification. To accomplish medical image data, neural network is trained to use the Convolution algorithm. Multilayer perceptron is intended for identification of a image. In this study article, the brain images are categorized into two types: normal and abnormal. This article emphasize the importance of classification and feature selection approach for predicting the brain tumor. This classification is done by machine learning techniques like Artificial Neural Networks, Support Vector Machine and Deep Neural Network. It could be noted that more than one technique can be applied for the segmentation of tumor. The several samples of brain tumor images are classified using deep learning algorithms, convolution neural network and multi-layer perceptron.


2019 ◽  
Vol 44 (2) ◽  
Author(s):  
Javaria Amin ◽  
Muhammad Sharif ◽  
Nadia Gul ◽  
Mudassar Raza ◽  
Muhammad Almas Anjum ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Siyu Xiong ◽  
Guoqing Wu ◽  
Xitian Fan ◽  
Xuan Feng ◽  
Zhongcheng Huang ◽  
...  

Abstract Background Brain tumor segmentation is a challenging problem in medical image processing and analysis. It is a very time-consuming and error-prone task. In order to reduce the burden on physicians and improve the segmentation accuracy, the computer-aided detection (CAD) systems need to be developed. Due to the powerful feature learning ability of the deep learning technology, many deep learning-based methods have been applied to the brain tumor segmentation CAD systems and achieved satisfactory accuracy. However, deep learning neural networks have high computational complexity, and the brain tumor segmentation process consumes significant time. Therefore, in order to achieve the high segmentation accuracy of brain tumors and obtain the segmentation results efficiently, it is very demanding to speed up the segmentation process of brain tumors. Results Compared with traditional computing platforms, the proposed FPGA accelerator has greatly improved the speed and the power consumption. Based on the BraTS19 and BraTS20 dataset, our FPGA-based brain tumor segmentation accelerator is 5.21 and 44.47 times faster than the TITAN V GPU and the Xeon CPU. In addition, by comparing energy efficiency, our design can achieve 11.22 and 82.33 times energy efficiency than GPU and CPU, respectively. Conclusion We quantize and retrain the neural network for brain tumor segmentation and merge batch normalization layers to reduce the parameter size and computational complexity. The FPGA-based brain tumor segmentation accelerator is designed to map the quantized neural network model. The accelerator can increase the segmentation speed and reduce the power consumption on the basis of ensuring high accuracy which provides a new direction for the automatic segmentation and remote diagnosis of brain tumors.


Sign in / Sign up

Export Citation Format

Share Document