OffFog: An Approach to Support the Definition of Offloading Policies on Fog Computing
IoT devices deployed in Smart Cities usually have significant resource limitations. For this reason, offload tasks or data to other layers such as fog or cloud is regularly adopted to smooth out this issue. Although data offloading is a well-known aspect of fog computing, the specification of offloading policies is still an open issue due to the lack of clear guidelines. Therefore, we propose OffFog—an approach to guide the definition of data offloading policies in the context of fog computing. In order to evaluate OffFog, we extended the well-known simulator iFogSim and conducted an experimental study based on an urban surveillance system. The results demonstrated the benefits of implementing data offloading based on OffFog recommended policies. Furthermore, we identified the best configuration involving design decisions such as data compression, data criticality, and storage thresholds. The best configuration produced at least 76% improvement in network latency and 5% in the average execution time compared to the iFogSim default strategy. We believe these results represent a significant step towards establishing a systematic decision framework for data offloading policies in the context of fog computing.