scholarly journals State-of-the-Art Review on IoT Threats and Attacks: Taxonomy, Challenges and Solutions

2021 ◽  
Vol 13 (16) ◽  
pp. 9463
Author(s):  
Ritika Raj Krishna ◽  
Aanchal Priyadarshini ◽  
Amitkumar V. Jha ◽  
Bhargav Appasani ◽  
Avireni Srinivasulu ◽  
...  

The Internet of Things (IoT) plays a vital role in interconnecting physical and virtual objects that are embedded with sensors, software, and other technologies intending to connect and exchange data with devices and systems around the globe over the Internet. With a multitude of features to offer, IoT is a boon to mankind, but just as two sides of a coin, the technology, with its lack of securing information, may result in a big bane. It is estimated that by the year 2030, there will be nearly 25.44 billion IoT devices connected worldwide. Due to the unprecedented growth, IoT is endangered by numerous attacks, impairments, and misuses due to challenges such as resource limitations, heterogeneity, lack of standardization, architecture, etc. It is known that almost 98% of IoT traffic is not encrypted, exposing confidential and personal information on the network. To implement such a technology in the near future, a comprehensive implementation of security, privacy, authentication, and recovery is required. Therefore, in this paper, the comprehensive taxonomy of security and threats within the IoT paradigm is discussed. We also provide insightful findings, presumptions, and outcomes of the challenges to assist IoT developers to address risks and security flaws for better protection. A five-layer and a seven-layer IoT architecture are presented in addition to the existing three-layer architecture. The communication standards and the protocols, along with the threats and attacks corresponding to these three architectures, are discussed. In addition, the impact of different threats and attacks along with their detection, mitigation, and prevention are comprehensively presented. The state-of-the-art solutions to enhance security features in IoT devices are proposed based on Blockchain (BC) technology, Fog Computing (FC), Edge Computing (EC), and Machine Learning (ML), along with some open research problems.

2019 ◽  
Vol 20 (2) ◽  
pp. 365-376 ◽  
Author(s):  
Vivek Kumar Prasad ◽  
Madhuri D Bhavsar ◽  
Sudeep Tanwar

The evolution of the Internet of Things (IoT) has augmented the necessity for Cloud, edge and fog platforms. The chief benefit of cloud-based schemes is they allow data to be collected from numerous services and sites, which is reachable from any place of the world. The organizations will be benefited by merging the cloud platform with the on-site fog networks and edge devices and as result, this will increase the utilization of the IoT devices and end users too. The network traffic will reduce as data will be distributed and this will also improve the operational efficiency. The impact of monitoring in edge and fog computing can play an important role to efficiently utilize the resources available at these layers. This paper discusses various techniques involved for monitoring for edge and fog computing and its advantages. The paper ends with a case study to demonstarte the need of monitoring in fog and edge in the healthcare system.


Author(s):  
Tanweer Alam

In next-generation computing, the role of cloud, internet and smart devices will be capacious. Nowadays we all are familiar with the word smart. This word is used a number of times in our daily life. The Internet of Things (IoT) will produce remarkable different kinds of information from different resources. It can store big data in the cloud. The fog computing acts as an interface between cloud and IoT. The extension of fog in this framework works on physical things under IoT. The IoT devices are called fog nodes, they can have accessed anywhere within the range of the network. The blockchain is a novel approach to record the transactions in a sequence securely. Developing a new blockchains based middleware framework in the architecture of the Internet of Things is one of the critical issues of wireless networking where resolving such an issue would result in constant growth in the use and popularity of IoT. The proposed research creates a framework for providing the middleware framework in the internet of smart devices network for the internet of things using blockchains technology. Our main contribution links a new study that integrates blockchains to the Internet of things and provides communication security to the internet of smart devices.


Author(s):  
Aman Tyagi

Elderly population in the Asian countries is increasing at a very fast rate. Lack of healthcare resources and infrastructure in many countries makes the task of provding proper healthcare difficult. Internet of things (IoT) in healthcare can address the problem effectively. Patient care is possible at home using IoT devices. IoT devices are used to collect different types of data. Various algorithms may be used to analyse data. IoT devices are connected to the internet and all the data of the patients with various health reports are available online and hence security issues arise. IoT sensors, IoT communication technologies, IoT gadgets, components of IoT, IoT layers, cloud and fog computing, benefits of IoT, IoT-based algorithms, IoT security issues, and IoT challenges are discussed in the chapter. Nowadays global epidemic COVID19 has demolished the economy and health services of all the countries worldwide. Usefulness of IoT in COVID19-related issues is explained here.


2019 ◽  
Vol 9 (1) ◽  
pp. 178 ◽  
Author(s):  
Belal Sudqi Khater ◽  
Ainuddin Wahid Bin Abdul Wahab ◽  
Mohd Yamani Idna Bin Idris ◽  
Mohammed Abdulla Hussain ◽  
Ashraf Ahmed Ibrahim

Fog computing is a paradigm that extends cloud computing and services to the edge of the network in order to address the inherent problems of the cloud, such as latency and lack of mobility support and location-awareness. The fog is a decentralized platform capable of operating and processing data locally and can be installed in heterogeneous hardware which makes it ideal for Internet of Things (IoT) applications. Intrusion Detection Systems (IDSs) are an integral part of any security system for fog and IoT networks to ensure the quality of service. Due to the resource limitations of fog and IoT devices, lightweight IDS is highly desirable. In this paper, we present a lightweight IDS based on a vector space representation using a Multilayer Perceptron (MLP) model. We evaluated the presented IDS against the Australian Defense Force Academy Linux Dataset (ADFA-LD) and Australian Defense Force Academy Windows Dataset (ADFA-WD), which are new generation system calls datasets that contain exploits and attacks on various applications. The simulation shows that by using a single hidden layer and a small number of nodes, we are able to achieve a 94% Accuracy, 95% Recall, and 92% F1-Measure in ADFA-LD and 74% Accuracy, 74% Recall, and 74% F1-Measure in ADFA-WD. The performance is evaluated using a Raspberry Pi.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4121 ◽  
Author(s):  
Alberto Giaretta ◽  
Nicola Dragoni ◽  
Fabio Massacci

Cybersecurity is one of the biggest challenges in the Internet of Things (IoT) domain, as well as one of its most embarrassing failures. As a matter of fact, nowadays IoT devices still exhibit various shortcomings. For example, they lack secure default configurations and sufficient security configurability. They also lack rich behavioural descriptions, failing to list provided and required services. To answer this problem, we envision a future where IoT devices carry behavioural contracts and Fog nodes store network policies. One requirement is that contract consistency must be easy to prove. Moreover, contracts must be easy to verify against network policies. In this paper, we propose to combine the security-by-contract (S × C) paradigm with Fog computing to secure IoT devices. Following our previous work, first we formally define the pillars of our proposal. Then, by means of a running case study, we show that we can model communication flows and prevent information leaks. Last, we show that our contribution enables a holistic approach to IoT security, and that it can also prevent unexpected chains of events.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3208 ◽  
Author(s):  
Armin Babaei ◽  
Gregor Schiele

Attacks on Internet of Things (IoT) devices are on the rise. Physical Unclonable Functions (PUFs) are proposed as a robust and lightweight solution to secure IoT devices. The main advantage of a PUF compared to the current classical cryptographic solutions is its compatibility with IoT devices with limited computational resources. In this paper, we investigate the maturity of this technology and the challenges toward PUF utilization in IoT that still need to be addressed.


Author(s):  
Shashwat Pathak ◽  
Shreyans Pathak

The recent decade has seen considerable changes in the way the technology interacts with human lives and almost all the aspects of life be it personal or professional has been touched by technology. Many smart devices have also started playing a vital role in many fields and domains and the internet of things (IoT) has been the harbinger of the advent of IoT devices. IoT devices have proven to be monumental in imparting ‘smartness' in the otherwise static machines. The ability of the devices to interact and transfer the data to the internet and ultimately to the end-user has revolutionized the technological world and has brought many seemingly disparate fields in the technological purview. Out of the many fields where IoT has started gaining momentum, one of the most important ones is the healthcare sector. Many wearable smart devices have been developed over time capable to transmit real-time data to hospitals and doctors. It is essential for tracking the progress of the critically ill patients and has opened the horizon for attending patients remotely using these smart devices.


2005 ◽  
Vol 20 (4) ◽  
pp. 329-361 ◽  
Author(s):  
DANIELA GODOY ◽  
ANALIA AMANDI

Personal information agents have emerged in the last decade to help users to cope with the increasing amount of information available on the Internet. These agents are intelligent assistants that perform several information-related tasks such as finding, filtering and monitoring relevant information on behalf of users or communities of users. In order to provide personalized assistance, personal agents rely on representations of user information interests and preferences contained in user profiles. In this paper, we present a summary of the state-of-the-art in user profiling in the context of intelligent information agents. Existing approaches and lines of research in the main dimensions of user profiling, such as acquisition, learning, adaptation and evaluation, are discussed.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 361
Author(s):  
Jaeseung Lee ◽  
Jungho Kang ◽  
Moon-seog Jun ◽  
Jaekyung Han

The rapid development of Internet technology and the spread of various smart devices have enabled the creation of a convenient environment used by people all around the world. It has become increasingly popular, with the technology known as the Internet of Things (IoT). However, both the development and proliferation of IoT technology have caused various problems such as personal information leakage and privacy violations due to attacks by hackers. Furthermore, countless devices are connected to the network in the sense that all things are connected to the Internet, and network attacks that have thus far been exploited in the existing PC environment are now also occurring frequently in the IoT environment. In fact, there have been many security incidents such as DDoS attacks involving the hacking of IP cameras, which are typical IoT devices, leakages of personal information and the monitoring of numerous persons without their consent. While attacks in the existing Internet environment were PC-based, we have confirmed that various smart devices used in the IoT environment—such as IP cameras and tablets—can be utilized and exploited for attacks on the network. Even though it is necessary to apply security solutions to IoT devices in order to prevent potential problems in the IoT environment, it is difficult to install and execute security solutions due to the inherent features of small devices with limited memory space and computational power in this aforementioned IoT environment, and it is also difficult to protect certificates and encryption keys due to easy physical access. Accordingly, this paper examines potential security threats in the IoT environment and proposes a security design and the development of an intelligent security framework designed to prevent them. The results of the performance evaluation of this study confirm that the proposed protocol is able to cope with various security threats in the network. Furthermore, from the perspective of energy efficiency, it was also possible to confirm that the proposed protocol is superior to other cryptographic protocols. Thus, it is expected to be effective if applied to the IoT environment.


2020 ◽  
Author(s):  
Yehia I. Alzoubi ◽  
Valmira H. Osmanaj ◽  
Ashraf Jaradat ◽  
Ahmad Al‐Ahmad

Sign in / Sign up

Export Citation Format

Share Document