scholarly journals A Novel Hypoxic-Angiogenesis-Immune-Related Gene Model for Prognostic and Therapeutic Effect Prediction in Hepatocellular Carcinoma Patients

2022 ◽  
Vol 2022 ◽  
pp. 1-27
Author(s):  
Wen Lv ◽  
Qi Yao

Background. Hepatocellular carcinoma (HCC) is one of the most heterogeneous malignant tumors that have been discovered so far, which makes the prognostic prediction difficult. The hypoxia, angiogenesis, and immunity-related genes (HAIRGs) are closely related to the development of liver cancer. However, the prognostic and treatment effect of hypoxia, angiogenesis, and immunity-related genes in HCC continues to be further clarified. Methods. The gene expression quantification data and clinical information in patients with liver cancer were downloaded from the TCGA database, and HAIRG signature was built by using the least absolute shrinkage and selection operator (LASSO) technique. Patient from the ICGC database validated the model. Then, tumor immune dysfunction and exclusion (TIDE) algorithm was applied to estimate the clinical response to immunotherapy and the sensitivity of drugs was evaluated by the half-maximal inhibitory concentration (IC50). Result. The HAIRGs were identified between the HCC patients and normal patients in the TCGA database. In univariate Cox regression analysis, seventeen differentially expressed genes (DEGs) were associated with overall survival (OS). An eight HAIRG signature model was constructed and was used to divide the patients into two groups according to the median value of the risk score base on the TCGA dataset. Patients in the high-risk group had a significant reduction in OS compared to those in the low-risk group ( P < 0.001 in the TCGA, P < 0.001 in the ICGC). For TCGA and ICGC databases of univariate Cox regression analyses, the risk score was used as an independent predictor of OS ( HR > 1 , P < 0.001 ). Functional analysis showed that the relevant immune pathways and immune responses were enriched, cellular component analysis showed that the immunoglobulin complex and other related substances were enriched, and immune status existed a difference in the high- and low-risk groups. Then, the tumor immune dysfunction and exclusion (TIDE) algorithm presented differences in immune response in the high- and low-risk groups ( P < 0.05 ), and based on drug sensitivity prediction, patients in the high-risk group were more sensitive to cisplatin compared to those in the low-risk group in both the TCGA and ICGC cohorts ( P < 0.05 ). Conclusions. HAIRG signature can be utilized for prognostic prediction in HCC, while it can be considered a prediction model for clinical evaluation of immunotherapy response and chemotherapy sensitivity in HCC.

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Pingfei Tang ◽  
Weiming Qu ◽  
Dajun Wu ◽  
Shihua Chen ◽  
Minji Liu ◽  
...  

Background. Acidosis in the tumor microenvironment (TME) is involved in tumor immune dysfunction and tumor progression. We attempted to develop an acidosis-related index (ARI) signature to improve the prognostic prediction of pancreatic carcinoma (PC). Methods. Differential gene expression analyses of two public datasets (GSE152345 and GSE62452) from the Gene Expression Omnibus database were performed to identify the acidosis-related genes. The Cancer Genome Atlas–pancreatic carcinoma (TCGA-PAAD) cohort in the TCGA database was set as the discovery dataset. Univariate Cox regression and the Kaplan–Meier method were applied to screen for prognostic genes. The least absolute shrinkage and selection operator (LASSO) Cox regression was used to establish the optimal model. The tumor immune infiltrating pattern was characterized by the single-sample gene set enrichment analysis (ssGSEA) method, and the prediction of immunotherapy responsiveness was conducted using the tumor immune dysfunction and exclusion (TIDE) algorithm. Results. We identified 133 acidosis-related genes, of which 37 were identified as prognostic genes by univariate Cox analysis in combination with the Kaplan–Meier method ( p values of both methods < 0.05). An acidosis-related signature involving seven genes (ARNTL2, DKK1, CEP55, CTSV, MYEOV, DSG2, and GBP2) was developed in TCGA-PAAD and further validated in GSE62452. Patients in the acidosis-related high-risk group consistently showed poorer survival outcomes than those in the low-risk group. The 5-year AUCs (areas under the curve) for survival prediction were 0.738 for TCGA-PAAD and 0.889 for GSE62452, suggesting excellent performance. The low-risk group in TCGA-PAAD showed a higher abundance of CD8+ T cells and activated natural killer cells and was predicted to possess an elevated proportion of immunotherapeutic responders compared with the high-risk counterpart. Conclusions. We developed a reliable acidosis-related signature that showed excellent performance in prognostic prediction and correlated with tumor immune infiltration, providing a new direction for prognostic evaluation and immunotherapy management in PC.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Dakui Luo ◽  
Zezhi Shan ◽  
Qi Liu ◽  
Sanjun Cai ◽  
Qingguo Li ◽  
...  

A metabolic disorder is considered one of the hallmarks of cancer. Multiple differentially expressed metabolic genes have been identified in colon cancer (CC), and their biological functions and prognostic values have been well explored. The purpose of the present study was to establish a metabolic signature to optimize the prognostic prediction in CC. The related data were downloaded from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) database, and Gene Expression Omnibus (GEO) combined with GSE39582 set, GSE17538 set, GSE33113 set, and GSE37892 set. The differentially expressed metabolic genes were selected for univariate Cox regression and lasso Cox regression analysis using TCGA and GTEx datasets. Finally, a seventeen-gene metabolic signature was developed to divide patients into a high-risk group and a low-risk group. Patients in the high-risk group presented poorer prognosis compared to the low-risk group in both TCGA and GEO datasets. Moreover, gene set enrichment analyses demonstrated multiple significantly enriched metabolism-related pathways. To sum up, our study described a novel seventeen-gene metabolic signature for prognostic prediction of colon cancer.


2020 ◽  
Author(s):  
Li Liu ◽  
She Tian ◽  
Zhu Li ◽  
Yongjun Gong ◽  
Hao Zhang

Abstract Background : Hepatocellular carcinoma (HCC) is one of the most common clinical malignant tumors, resulting in high mortality and poor prognosis. Studies have found that LncRNA plays an important role in the onset, metastasis and recurrence of hepatocellular carcinoma. The immune system plays a vital role in the development, progression, metastasis and recurrence of cancer. Therefore, immune-related lncRNA can be used as a novel biomarker to predict the prognosis of hepatocellular carcinoma. Methods : The transcriptome data and clinical data of HCC patients were obtained by using The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA‑LIHC), and immune-related genes were extracted from the Molecular Signatures Database (IMMUNE RESPONSE M19817 and IMMUNE SYSTEM PROCESS M13664). By constructing the co-expression network and Cox regression analysis, 13 immune-lncRNAs was identified to predict the prognosis of HCC patients. Patients were divided into high risk group and low risk group by using the risk score formula, and the difference in overall survival (OS) between the two groups was reflected by Kaplan-Meier survival curve. The time - dependent receiver operating characteristics (ROC) analysis and principal component analysis (PCA) were used to evaluate 13 immune -lncRNAs signature. Results : Through TCGA - LIHC extracted from 343 cases of patients with hepatocellular carcinoma RNA - Seq data and clinical data, 331 immune-related genes were extracted from the Molecular Signatures Database , co-expression networks and Cox regression analysis were constructed, 13 immune-lncRNAs signature was identified as biomarkers to predict the prognosis of patients. At the same time using the risk score median divided the patients into high risk and low risk groups, and through the Kaplan-Meier survival curve analysis found that high-risk group of patients' overall survival (OS) less low risk group of patients. The AUC value of the ROC curve is 0.828, and principal component analysis (PCA) results showed that patients could be clearly divided into two parts by immune-lncRNAs, which provided evidence for the use of 13 immune-lncRNAs signature as prognostic markers. Conclusion : Our study identified 13 immune-lncRNAs signature that can effectively predict the prognosis of HCC patients, which may be a new prognostic indicator for predicting clinical outcomes.


2021 ◽  
Author(s):  
Shenglan Huang ◽  
Jian Zhang ◽  
Dan Li ◽  
Xiaolan Lai ◽  
Lingling Zhuang ◽  
...  

Abstract Introduction: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with poor prognosis. Tumor microenvironment (TME) plays a vital role in the tumor progression of HCC. Thus, we aimed to analyze the association of TME with HCC prognosis, and construct an TME-related lncRNAs signature for predicting the prognosis of HCC patients.Methods: We firstly assessed the stromal/immune /Estimate scores within the HCC microenvironment using the ESTIMATE algorithm based on TCGA database, and its associations with survival and clinicopathological parameters were also analyzed. Then, different expression lncRNAs were filtered out according to immune/stromal scores. Cox regression was performed to built an TME-related lncRNAs risk signature. Kaplan–Meier analysis was carried out to explored the prognostic values of the risk signature. Furthermore, we explored the biological functions and immune microenvironment feathers in high- and low risk groups. Lastly, we probed the association of the risk signature with the treatment responses to immune checkpoint inhibitors (ICIs) in HCC by comparing the immunophenoscore (IPS).Results: Stromal/immune /Estimate scores of HCC patients were obtained based on the ESTIMATE algorithm. The Kaplan-Meier curve analysis showed the high stromal/immune/ Estimate scores were significantly associated with better prognosis of the HCC patients. Then, six TME-related lncRNAs were screened for constructing the prognosis model. Kaplan-Meier survival curves suggested that HCC patients in high-risk group had worse prognosis than those with low-risk. ROC curve and Cox regression analyses demonstrated the signature could predict HCC survival exactly and independently. Function enrichment analysis revealed that some tumor- and immune-related pathways associated with HCC tumorigenesis and progression might be activated in high-risk group. We also discovered that some immune cells, which were beneficial to enhance immune responses towards cancer, were remarkably upregulated in low-risk group. Besides, there was closely correlation of immune checkmate inhibitors (ICIs) with the risk signature and the signature can be used to predict treatment response of ICIs.Conclusions: We analyzed the impact of the tumor microenvironment scores on the prognosis of patients with HCC. A novel TME-related prognostic risk signature was established, which may improve prognostic predictive accuracy and guide individualized immunotherapy for HCC patients.


2020 ◽  
Author(s):  
Kui Wu ◽  
Yongjie Shui ◽  
Wenzheng Sun ◽  
Sheng Lin ◽  
Haowen Pang

Abstract Objective This study aimed to develop and validate the combination of radiomic features and clinical characteristics that can predict patient survival in HCC with PVTT treated with SBRT. Materials and Methods The prediction model was developed in a primary cohort of 70 patients with HCC and PVTT treated with SBRT, using data acquired between December 2015 and June 2017. The radiomic features were extracted from computed tomography (CT) scans. A least absolute shrinkage and selection operator regression model was used to build the radiomic feature. Multivariate Cox-regression hazard models were created for analyzing survival outcomes and the radiomic features and clinical characteristics were presented with a nomogram. The area under the curve (AUC) of the receiver operating characteristic curve was used to evaluate the model. Participants were divided into a high-risk group and a low-risk group based on the radiomic features. Results A total of seven radiomic features and five clinical characteristics were extracted for survival analysis. A combination of the radiomic features and clinical characteristics resulted in better performance for the estimation of overall survival (OS) [AUC = 0.859 (CI: 0.770–0.948)] than that with clinical characteristics alone [AUC = 0.761 (CI: 0.641–0.881)]. These patients were divided into high-risk and low-risk groups according to the radiomic features. Conclusion This study demonstrated that a nomogram of combined radiomic features and clinical characteristics can be conveniently used to facilitate individualized preoperative prediction of OS in patients with HCC with PVTT before SBRT.


2021 ◽  
Author(s):  
Fang Wen ◽  
Xiaoxue Chen ◽  
Wenjie Huang ◽  
Shuai Ruan ◽  
Suping Gu ◽  
...  

Abstract Background: The diagnosis rate and mortality of gastric cancer (GC) are among the highest in the global, so it is of great significance to predict the survival time of GC patients. Ferroptosis and iron-metabolism make a critical impact on tumor development and are closely linked to the treatment of cancer and the prognosis of patients. However, the predictive value of the genes involved in ferroptosis and iron-metabolism in GC and their effects on immune microenvironment remain to be further clarified.Methods: In this study, the RNA sequence information and general clinical indicators of GC patients were acquired from the public databases. We first systematically screen out 134 DEGs and 13 PRGs related to ferroptosis and iron-metabolism. Then, we identified six PRDEGs (GLS2, MTF1, SLC1A5, SP1, NOX4, and ZFP36) based on the LASSO-penalized Cox regression analysis. The 6-gene prognostic risk model was established in the TCGA cohort and the GC patients were separated into the high- and the low-risk groups through the risk score median value. GEO cohort was used for verification. The expression of PRDEGs was verified by quantitative QPCR.Results: Our study demonstrated that patients in the low-risk group had a higher survival probability compared with those in high-risk group. In addition, univariate and multivariate Cox regression analyses confirmed that the risk score was an independent prediction parameter. The ROC curve analysis and nomogram manifested that the risk model had the high predictive ability and was more sensitive than general clinical features. Furthermore, compared with the high-risk group, the low-risk group had higher TMB and a longer 5-year survival period. In the immune microenvironment of GC, there were also differences in immune function and highly infiltrated immune cells between the two risk groups.Conclusions: The prognostic risk model based on the six genes associated with ferroptosis and iron-metabolism has a good performance for predicting the prognosis of patients with GC. The treatment of cancer by inducing tumor ferroptosis or mediating tumor iron-metabolism, especially combined with immunotherapy, provides a new possibility for individualized treatment of GC patients.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11074
Author(s):  
Jin Duan ◽  
Youming Lei ◽  
Guoli Lv ◽  
Yinqiang Liu ◽  
Wei Zhao ◽  
...  

Background Lung adenocarcinoma (LUAD) is the most commonhistological lung cancer subtype, with an overall five-year survivalrate of only 17%. In this study, we aimed to identify autophagy-related genes (ARGs) and develop an LUAD prognostic signature. Methods In this study, we obtained ARGs from three databases and downloaded gene expression profiles from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. We used TCGA-LUAD (n = 490) for a training and testing dataset, and GSE50081 (n = 127) as the external validation dataset.The least absolute shrinkage and selection operator (LASSO) Cox and multivariate Cox regression models were used to generate an autophagy-related signature. We performed gene set enrichment analysis (GSEA) and immune cell analysis between the high- and low-risk groups. A nomogram was built to guide the individual treatment for LUAD patients. Results We identified a total of 83 differentially expressed ARGs (DEARGs) from the TCGA-LUAD dataset, including 33 upregulated DEARGs and 50 downregulated DEARGs, both with thresholds of adjusted P < 0.05 and |Fold change| > 1.5. Using LASSO and multivariate Cox regression analyses, we identified 10 ARGs that we used to build a prognostic signature with areas under the curve (AUCs) of 0.705, 0.715, and 0.778 at 1, 3, and 5 years, respectively. Using the risk score formula, the LUAD patients were divided into low- or high-risk groups. Our GSEA results suggested that the low-risk group were enriched in metabolism and immune-related pathways, while the high-risk group was involved in tumorigenesis and tumor progression pathways. Immune cell analysis revealed that, when compared to the high-risk group, the low-risk group had a lower cell fraction of M0- and M1- macrophages, and higher CD4 and PD-L1 expression levels. Conclusion Our identified robust signature may provide novel insight into underlying autophagy mechanisms as well as therapeutic strategies for LUAD treatment.


2020 ◽  
Vol 10 ◽  
Author(s):  
Qiongxuan Fang ◽  
Hongsong Chen

BackgroundHepatocellular carcinoma (HCC) is the seventh most common malignancy and the second most common cause of cancer-related deaths. Autophagy plays a crucial role in the development and progression of HCC.MethodsUnivariate and Lasso Cox regression analyses were performed to determine a gene model that was optimal for overall survival (OS) prediction. Patients in the GSE14520 and GSE54236 datasets of the Cancer Genome Atlas (TCGA) were divided into the high-risk and low-risk groups according to established ATG models. Univariate and multivariate Cox regression analyses were used to identify risk factors for OS for the purpose of constructing nomograms. Calibration and receiver operating characteristic (ROC) curves were used to evaluate model performance. Real-time PCR was used to validate the effects of the presence or absence of an autophagy inhibitor on gene expression in HepG2 and Huh7 cell lines.ResultsOS in the high-risk group was significantly shorter than that in the low-risk group. Gene set enrichment analysis (GSEA) indicated that the association between the low-risk group and autophagy- as well as immune-related pathways was significant. ULK2, PPP3CC, and NAFTC1 may play vital roles in preventing HCC progression. Furthermore, tumor environment analysis via ESTIMATION indicated that the low-risk group was associated with high immune and stromal scores. Based on EPIC prediction, CD8+ T and B cell fractions in the TCGA and GSE54236 datasets were significantly higher in the low-risk group than those in the high-risk group. Finally, based on the results of univariate and multivariate analyses three variables were selected for nomogram development. The calibration plots showed good agreement between nomogram prediction and actual observations. Inhibition of autophagy resulted in the overexpression of genes constituting the gene model in HepG2 and Huh7 cells.ConclusionsThe current study determined the role played by autophagy-related genes (ATGs) in the progression of HCC and constructed a novel nomogram that predicts OS in HCC patients, through a combined analysis of TCGA and gene expression omnibus (GEO) databases.


2021 ◽  
Author(s):  
Yongfei He ◽  
Shuqi Zhao ◽  
Zhongliu Wei ◽  
Xin Zhou ◽  
Tianyi Liang ◽  
...  

Abstract BackgroundIn this study, we comprehensively analyzed the relationship between ferroptosis regulator genes (FRGs) and prognosis of hepatocellular carcinoma (HCC), determined the prognostics value of FRGs, established a prediction model, and explored the relationship with immunotherapy for HCC.MethodsThe mRNA transcriptional levels and clinical information of HCC were obtained from The Cancer Genome Atlas (TCGA) database. The 24 FRGs were combined with the differential expression genes (DEGs) of HCC for further analysis. The prognostics values of differential FRGs via the construction of model and validation by the Cox regression analysis.ResultThere were three genes (CARS1, FANCD2, and SLC7A11) were identified as independent risk factors for HCC, and a predictive model was constructed based on CARS1, FANCD2, and SLC7A11. The model showed that the low-risk group HCC patients with a more prolonged overall survival (OS) than the high-risk group (P=0.001). The high-risk group with higher expression of FRGs than the low-risk group. Finally, the relations between FGEs and immune infiltration showed that CARS1, FANCD2, and SLC7A11 had a positive relationship with macrophage infiltration. From these, three genes might be the potential therapeutic targets.ConclusionOur study indicated that CARS1, FANCD2, and SLC7A11 might have potential value for therapeutic strategies as practical and reliable prognostic tools for HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yuan Chen ◽  
Guifu Wang ◽  
Hao Xu ◽  
Hao Wang ◽  
Dousheng Bai

Hepatocellular carcinoma (HCC) is one of the most common internal malignancies worldwide and is associated with a poor prognosis. Abnormal expression of miRNAs is believed to play a role in the recurrent metastasis of HCC. However, limited studies on the role of miRNAs in HCC metastasis have been carried out. Therefore, this study is aimed at exploring the potential value of metastasis-related miRNAs (MRMs) in HCC. We retrieved MRMs were from the Human Cancer Metastasis Database. Differential miRNAs were identified for tumor samples of HCC patients and normal samples based on the TCGA database. Further, univariate and multivariate Cox regression analyses were used to screen MRMs known to be independent prognostic factors in HCC. These MRMs were then used to build a prognostic signature. All patients were classified into high-risk and low-risk groups based on the median of the signature scores. Moreover, GO and KEGG pathway enrichment analyses were performed to predict the function of these MRMs. Finally, a nomogram was constructed to predict the OS of patients at 1, 2, and 3 years. In our study, a total of seven prognostic MRMs (miR-140-3p, miR-9-5p, miR-942-5p, miR-324-3p, miR-29c-5p, miR-551a, and miR-149-5p) were identified and used for constructing the prognostic signature based on the training cohort. Patients in the low-risk HCC group showed better overall survival (OS) than those in the high-risk group. The results were validated using the validation cohort. In summary, the findings of this study provide evidence that MRMs-based prognostic signature is an independent biomarker in the prognosis of HCC patients.


Sign in / Sign up

Export Citation Format

Share Document