scholarly journals Ferroptosis regulator genes are a favorable biomarker for hepatocellular carcinoma

Author(s):  
Yongfei He ◽  
Shuqi Zhao ◽  
Zhongliu Wei ◽  
Xin Zhou ◽  
Tianyi Liang ◽  
...  

Abstract BackgroundIn this study, we comprehensively analyzed the relationship between ferroptosis regulator genes (FRGs) and prognosis of hepatocellular carcinoma (HCC), determined the prognostics value of FRGs, established a prediction model, and explored the relationship with immunotherapy for HCC.MethodsThe mRNA transcriptional levels and clinical information of HCC were obtained from The Cancer Genome Atlas (TCGA) database. The 24 FRGs were combined with the differential expression genes (DEGs) of HCC for further analysis. The prognostics values of differential FRGs via the construction of model and validation by the Cox regression analysis.ResultThere were three genes (CARS1, FANCD2, and SLC7A11) were identified as independent risk factors for HCC, and a predictive model was constructed based on CARS1, FANCD2, and SLC7A11. The model showed that the low-risk group HCC patients with a more prolonged overall survival (OS) than the high-risk group (P=0.001). The high-risk group with higher expression of FRGs than the low-risk group. Finally, the relations between FGEs and immune infiltration showed that CARS1, FANCD2, and SLC7A11 had a positive relationship with macrophage infiltration. From these, three genes might be the potential therapeutic targets.ConclusionOur study indicated that CARS1, FANCD2, and SLC7A11 might have potential value for therapeutic strategies as practical and reliable prognostic tools for HCC.

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Yinglian Pan ◽  
Li Ping Jia ◽  
Yuzhu Liu ◽  
Yiyu Han ◽  
Qian Li ◽  
...  

Abstract Background In this study we aimed to identify a prognostic signature in BRCA1/2 mutations to predict disease progression and the efficiency of chemotherapy ovarian cancer (OV), the second most common cause of death from gynecologic cancer in women worldwide. Methods Univariate Cox proportional-hazards and multivariate Cox regression analyses were used to identifying prognostic factors from data obtained from The Cancer Genome Atlas (TCGA) database. The area under the curve of the receiver operating characteristic curve was assessed, and the sensitivity and specificity of the prediction model were determined. Results A signature consisting of two long noncoding RNAs(lncRNAs), Z98885.2 and AC011601.1, was selected as the basis for classifying patients into high and low-risk groups (median survival: 7.2 years vs. 2.3 years). The three-year overall survival (OS) rates for the high- and low-risk group were approximately 38 and 100%, respectively. Chemotherapy treatment survival rates indicated that the high-risk group had significantly lower OS rates with adjuvant chemotherapy than the low-risk group. The one-, three-, and five-year OS were 100, 40, and 15% respectively in the high-risk group. The survival rate of the high-risk group declined rapidly after 2 years of OV chemotherapy treatment. Multivariate Cox regression associated with other traditional clinical factors showed that the 2-lncRNA model could be used as an independent OV prognostic factor. Analyses of data from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) indicated that these signatures are pivotal to cancer development. Conclusion In conclusion, Z98885.2 and AC011601.1 comprise a novel prognostic signature for OV patients with BRCA1/2 mutations, and can be used to predict prognosis and the efficiency of chemotherapy.


2020 ◽  
Author(s):  
Li Liu ◽  
She Tian ◽  
Zhu Li ◽  
Yongjun Gong ◽  
Hao Zhang

Abstract Background : Hepatocellular carcinoma (HCC) is one of the most common clinical malignant tumors, resulting in high mortality and poor prognosis. Studies have found that LncRNA plays an important role in the onset, metastasis and recurrence of hepatocellular carcinoma. The immune system plays a vital role in the development, progression, metastasis and recurrence of cancer. Therefore, immune-related lncRNA can be used as a novel biomarker to predict the prognosis of hepatocellular carcinoma. Methods : The transcriptome data and clinical data of HCC patients were obtained by using The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA‑LIHC), and immune-related genes were extracted from the Molecular Signatures Database (IMMUNE RESPONSE M19817 and IMMUNE SYSTEM PROCESS M13664). By constructing the co-expression network and Cox regression analysis, 13 immune-lncRNAs was identified to predict the prognosis of HCC patients. Patients were divided into high risk group and low risk group by using the risk score formula, and the difference in overall survival (OS) between the two groups was reflected by Kaplan-Meier survival curve. The time - dependent receiver operating characteristics (ROC) analysis and principal component analysis (PCA) were used to evaluate 13 immune -lncRNAs signature. Results : Through TCGA - LIHC extracted from 343 cases of patients with hepatocellular carcinoma RNA - Seq data and clinical data, 331 immune-related genes were extracted from the Molecular Signatures Database , co-expression networks and Cox regression analysis were constructed, 13 immune-lncRNAs signature was identified as biomarkers to predict the prognosis of patients. At the same time using the risk score median divided the patients into high risk and low risk groups, and through the Kaplan-Meier survival curve analysis found that high-risk group of patients' overall survival (OS) less low risk group of patients. The AUC value of the ROC curve is 0.828, and principal component analysis (PCA) results showed that patients could be clearly divided into two parts by immune-lncRNAs, which provided evidence for the use of 13 immune-lncRNAs signature as prognostic markers. Conclusion : Our study identified 13 immune-lncRNAs signature that can effectively predict the prognosis of HCC patients, which may be a new prognostic indicator for predicting clinical outcomes.


2021 ◽  
Vol 7 ◽  
Author(s):  
Xiaoyu Deng ◽  
Qinghua Bi ◽  
Shihan Chen ◽  
Xianhua Chen ◽  
Shuhui Li ◽  
...  

Although great progresses have been made in the diagnosis and treatment of hepatocellular carcinoma (HCC), its prognostic marker remains controversial. In this current study, weighted correlation network analysis and Cox regression analysis showed significant prognostic value of five autophagy-related long non-coding RNAs (AR-lncRNAs) (including TMCC1-AS1, PLBD1-AS1, MKLN1-AS, LINC01063, and CYTOR) for HCC patients from data in The Cancer Genome Atlas. By using them, we constructed a five-AR-lncRNA prognostic signature, which accurately distinguished the high- and low-risk groups of HCC patients. All of the five AR lncRNAs were highly expressed in the high-risk group of HCC patients. This five-AR-lncRNA prognostic signature showed good area under the curve (AUC) value (AUC = 0.751) for the overall survival (OS) prediction in either all HCC patients or HCC patients stratified according to several clinical traits. A prognostic nomogram with this five-AR-lncRNA signature predicted the 3- and 5-year OS outcomes of HCC patients intuitively and accurately (concordance index = 0.745). By parallel comparison, this five-AR-lncRNA signature has better prognosis accuracy than the other three recently published signatures. Furthermore, we discovered the prediction ability of the signature on therapeutic outcomes of HCC patients, including chemotherapy and immunotherapeutic responses. Gene set enrichment analysis and gene mutation analysis revealed that dysregulated cell cycle pathway, purine metabolism, and TP53 mutation may play an important role in determining the OS outcomes of HCC patients in the high-risk group. Collectively, our study suggests a new five-AR-lncRNA prognostic signature for HCC patients.


2021 ◽  
Author(s):  
Shenglan Huang ◽  
Jian Zhang ◽  
Dan Li ◽  
Xiaolan Lai ◽  
Lingling Zhuang ◽  
...  

Abstract Introduction: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with poor prognosis. Tumor microenvironment (TME) plays a vital role in the tumor progression of HCC. Thus, we aimed to analyze the association of TME with HCC prognosis, and construct an TME-related lncRNAs signature for predicting the prognosis of HCC patients.Methods: We firstly assessed the stromal/immune /Estimate scores within the HCC microenvironment using the ESTIMATE algorithm based on TCGA database, and its associations with survival and clinicopathological parameters were also analyzed. Then, different expression lncRNAs were filtered out according to immune/stromal scores. Cox regression was performed to built an TME-related lncRNAs risk signature. Kaplan–Meier analysis was carried out to explored the prognostic values of the risk signature. Furthermore, we explored the biological functions and immune microenvironment feathers in high- and low risk groups. Lastly, we probed the association of the risk signature with the treatment responses to immune checkpoint inhibitors (ICIs) in HCC by comparing the immunophenoscore (IPS).Results: Stromal/immune /Estimate scores of HCC patients were obtained based on the ESTIMATE algorithm. The Kaplan-Meier curve analysis showed the high stromal/immune/ Estimate scores were significantly associated with better prognosis of the HCC patients. Then, six TME-related lncRNAs were screened for constructing the prognosis model. Kaplan-Meier survival curves suggested that HCC patients in high-risk group had worse prognosis than those with low-risk. ROC curve and Cox regression analyses demonstrated the signature could predict HCC survival exactly and independently. Function enrichment analysis revealed that some tumor- and immune-related pathways associated with HCC tumorigenesis and progression might be activated in high-risk group. We also discovered that some immune cells, which were beneficial to enhance immune responses towards cancer, were remarkably upregulated in low-risk group. Besides, there was closely correlation of immune checkmate inhibitors (ICIs) with the risk signature and the signature can be used to predict treatment response of ICIs.Conclusions: We analyzed the impact of the tumor microenvironment scores on the prognosis of patients with HCC. A novel TME-related prognostic risk signature was established, which may improve prognostic predictive accuracy and guide individualized immunotherapy for HCC patients.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 3639-3639
Author(s):  
Daniel J. Sargent ◽  
Qian Shi ◽  
Sharlene Gill ◽  
Christophe Louvet ◽  
Richard Bernard Everson ◽  
...  

3639 Background: The first phase of the multi-center prospectively specified retrospective study Validating Indicators To Associate Recurrence (VITAR), assessing the relationship between GCC gene expression in formalin fixed (FFPE) LNs and time to recurrence (TTR) in stage II CC pts not treated with adjuvant chemotherapy (Sargent, Annals Surg Onc 2011), showed promising initial results. Here we report a validation set of 463 new stage II CC pts. Methods: GCC mRNA was quantified by RT-qPCR using FFPE LNs from untreated T3N0 CC pts diagnosed from 1999-2008 with at least 12 LNs examined , blinded to clinical outcomes. Patients were classified by GCC LN ratio (LNR) (high risk: LNR > 0.1; low risk: LNR ≤ 0.1), with LNR defined as ratio of GCC positive to GCC informative LNs. Cox regression models tested the relationship between GCC and the primary endpoint of TTR, adjusted for age, tumor grade, number of LN examined pathologically, and lymphovascular invasion. Mismatch repair (MMR) status was also assessed. All primary analyses and cut-points were pre-specified. Results: 46pts (10%) recurred (rec), median follow-up was 65 months, median LNs examined was 20, and 42% (195/463) were classified high risk. Overall, TTR was not significantly associated with binary GCC LNR risk class (HR=1.47, p=.208) or DFS (HR= 1.39, p=.097). One site’s (n=97) tissue grossing method precluded appropriate LN assessment with existing GCC qualification methods. Excluding this site resulted in a TTR HR=1.91, p=0.051 (multivariate). In a post-hocanalysis excluding this site and using a 3-level GCC risk group of high (LNR > 0.20), intermediate (0.10 < LNR < 0.20) and low (LNR < 0.10), high risk group pts had a 5-yr rec risk of 22% versus 8% in low risk (HR 2.72, p=0.006). MMR status was not significantly associated with TTR (multivariate p=0.30). Conclusions: GCC status is a promising prognostic factor in appropriately staged stage II CC pts not treated with adjuvant therapy independent of traditional histopathology risk factors, but GCC determination must be performed with methodology adapted to the tissue procurement and fixation technique. Outcome associations were strengthened when considering a 3-level GCC categorization.


2021 ◽  
Author(s):  
Shuang Shen ◽  
Xin Chen ◽  
Rui Qu ◽  
Youming Guo ◽  
Yingying Su ◽  
...  

Abstract Background: Breast cancer (BC) surpassed lung cancer as the most frequent malignant tumour in women. In recent years, pyroptosis has revealed itself as an inflammatory form of programmed cell death. However, it is unclear as to the expression of genes associated with pyroptosis in BC and its relationship to prognosis. Results: In this study, we identified 31 pyroptosis regulators that are differentially expressed between BC and normal breast. The differently expressed genes (DEG) allow BC patients to be divided into three subtypes. Through single-factor and multi-factor COX regression and the application of least absolute contraction and selection operator (LASSO) Cox regression method, the survival prognostic value of each gene related to pyroptosis in The Cancer Genome Atlas (TCGA) cohort was evaluated, and a 4-gene signature was constructed. BC patients of the TCGA cohort are divided into low-risk or high-risk groups by risk score. The survival of the low-risk group was significantly higher than the high-risk group (P <0.001). Using the median risk score from the TCGA cohort, BC patients from the Gene Expression Omnibus (GEO) cohort were divided into two risk sub-groups and similar conclusions were drawn. In combination with clinicopathological characteristics, the risk score is an independent predictive factor of OS in BC patients. Gene ontology (GO) and Kyoto Encylopedia of Genes and Genomes (KEGG) indicated that the high-risk group's immune genes were enriched and immune status was reduced. Conclusions: In conclusion, pyroptosis-related genes are important for tumour immunity and can be used to predict the prognosis of BC.


2020 ◽  
Vol 10 ◽  
Author(s):  
Qiongxuan Fang ◽  
Hongsong Chen

BackgroundHepatocellular carcinoma (HCC) is the seventh most common malignancy and the second most common cause of cancer-related deaths. Autophagy plays a crucial role in the development and progression of HCC.MethodsUnivariate and Lasso Cox regression analyses were performed to determine a gene model that was optimal for overall survival (OS) prediction. Patients in the GSE14520 and GSE54236 datasets of the Cancer Genome Atlas (TCGA) were divided into the high-risk and low-risk groups according to established ATG models. Univariate and multivariate Cox regression analyses were used to identify risk factors for OS for the purpose of constructing nomograms. Calibration and receiver operating characteristic (ROC) curves were used to evaluate model performance. Real-time PCR was used to validate the effects of the presence or absence of an autophagy inhibitor on gene expression in HepG2 and Huh7 cell lines.ResultsOS in the high-risk group was significantly shorter than that in the low-risk group. Gene set enrichment analysis (GSEA) indicated that the association between the low-risk group and autophagy- as well as immune-related pathways was significant. ULK2, PPP3CC, and NAFTC1 may play vital roles in preventing HCC progression. Furthermore, tumor environment analysis via ESTIMATION indicated that the low-risk group was associated with high immune and stromal scores. Based on EPIC prediction, CD8+ T and B cell fractions in the TCGA and GSE54236 datasets were significantly higher in the low-risk group than those in the high-risk group. Finally, based on the results of univariate and multivariate analyses three variables were selected for nomogram development. The calibration plots showed good agreement between nomogram prediction and actual observations. Inhibition of autophagy resulted in the overexpression of genes constituting the gene model in HepG2 and Huh7 cells.ConclusionsThe current study determined the role played by autophagy-related genes (ATGs) in the progression of HCC and constructed a novel nomogram that predicts OS in HCC patients, through a combined analysis of TCGA and gene expression omnibus (GEO) databases.


2020 ◽  
Author(s):  
Bangyou Zuo ◽  
Haitao Zhao ◽  
Jin Bian ◽  
Junyun Long ◽  
Xu Yang ◽  
...  

Abstract Background The function of exosome includes cell-to-cell communication, neovascularization, and metastasis of cancer cell and drug resistance, which plays an important part in the occurrence and progression of hepatocellular carcinoma (HCC). Because the mechanism in this area is less studied, our goal is to identify exosome-related genes in HCC, establish a reliable prognostic model for liver cancer patients, and explore its underlying mechanisms. Methods The exoRbase database and The Cancer Genome Atlas (TCGA) database were used to analyze differentially expressed genes (DEGs). Cox regression and LASSO analysis were applied to determine DEGs closely related to overall survival (OS). Then the exosome-related prognostic model was constructed in TCGA and validated in the database of International Cancer Genome Consortium (ICGC). Nomogram graph was performed to predict the survival. CIBERSORT was used to estimate the score of different type of immune cells. DEGs related to immunotherapy are used to predict the effect of immunotherapy. Results 48 exosome-related DEGs were obtained and five genes (XPO1, IFI30, FBXO16, CALM1, MORC3) among them were selected to construct predictive model. Then we divided the HCC patients into low-risk and high-risk groups by the best cut-off value according to the X-tile software. The high-risk related to exosome were significantly associated with a poor prognosis. Moreover, the features related to exosome could positively regulate immune response. At the same time, the proportion of T cell regulatory factors (Tregs) and macrophages M2 is higher in the high-risk group, and high-risk group exhibited higher expression of immune checkpoint molecular including PD-L1, PD-L2, TIGIT, and IDO1. Conclusions Overall, our research showed that markers related to exosomes were potential biomarkers for the prognosis of HCC, providing an immunological perspective for the development of precision treatment.


2020 ◽  
Author(s):  
Yinglian Pan ◽  
LiPing Jia ◽  
Yuzhu Liu ◽  
Yiyu Han ◽  
Qian Li ◽  
...  

Abstract Background: In this study we aimed to identify a prognostic signature in BRCA1/2 mutations to predict disease progression and the efficiency of chemotherapy ovarian cancer (OV), the second most common cause of death from gynecologic cancer in women worldwide. Methods: Univariate Cox proportional-hazards and multivariate Cox regression analyses were used to identifying prognostic factors from data obtained from The Cancer Genome Atlas (TCGA) database. The area under the curve of the receiver operating characteristic curve was assessed, and the sensitivity and specificity of the prediction model were determined.Results: A signature consisting of two long noncoding RNAs(lncRNAs), Z98885.2 and AC011601.1, was selected as the basis for classifying patients into high and low-risk groups (median survival: 7.2 years vs. 2.3 years). The three-year overall survival (OS) rates for the high- and low-risk group were approximately 38% and 100%, respectively. Chemotherapy treatment survival rates indicated that the high-risk group had significantly lower OS rates with adjuvant chemotherapy than the low-risk group. The one-, three-, and five-year OS were 100%, 40%, and 15% respectively in the high-risk group. The survival rate of the high-risk group declined rapidly after two years of OV chemotherapy treatment. Multivariate Cox regression associated with other traditional clinical factors showed that the 2-lncRNA model could be used as an independent OV prognostic factor. Analyses of data from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) indicated that these signatures are pivotal to cancer development. Conclusion: In conclusion, Z98885.2 and AC011601.1 comprise a novel prognostic signature for OV patients with BRCA1/2 mutations, and can be used to predict prognosis and the efficiency of chemotherapy.


2022 ◽  
Vol 2022 ◽  
pp. 1-27
Author(s):  
Wen Lv ◽  
Qi Yao

Background. Hepatocellular carcinoma (HCC) is one of the most heterogeneous malignant tumors that have been discovered so far, which makes the prognostic prediction difficult. The hypoxia, angiogenesis, and immunity-related genes (HAIRGs) are closely related to the development of liver cancer. However, the prognostic and treatment effect of hypoxia, angiogenesis, and immunity-related genes in HCC continues to be further clarified. Methods. The gene expression quantification data and clinical information in patients with liver cancer were downloaded from the TCGA database, and HAIRG signature was built by using the least absolute shrinkage and selection operator (LASSO) technique. Patient from the ICGC database validated the model. Then, tumor immune dysfunction and exclusion (TIDE) algorithm was applied to estimate the clinical response to immunotherapy and the sensitivity of drugs was evaluated by the half-maximal inhibitory concentration (IC50). Result. The HAIRGs were identified between the HCC patients and normal patients in the TCGA database. In univariate Cox regression analysis, seventeen differentially expressed genes (DEGs) were associated with overall survival (OS). An eight HAIRG signature model was constructed and was used to divide the patients into two groups according to the median value of the risk score base on the TCGA dataset. Patients in the high-risk group had a significant reduction in OS compared to those in the low-risk group ( P < 0.001 in the TCGA, P < 0.001 in the ICGC). For TCGA and ICGC databases of univariate Cox regression analyses, the risk score was used as an independent predictor of OS ( HR > 1 , P < 0.001 ). Functional analysis showed that the relevant immune pathways and immune responses were enriched, cellular component analysis showed that the immunoglobulin complex and other related substances were enriched, and immune status existed a difference in the high- and low-risk groups. Then, the tumor immune dysfunction and exclusion (TIDE) algorithm presented differences in immune response in the high- and low-risk groups ( P < 0.05 ), and based on drug sensitivity prediction, patients in the high-risk group were more sensitive to cisplatin compared to those in the low-risk group in both the TCGA and ICGC cohorts ( P < 0.05 ). Conclusions. HAIRG signature can be utilized for prognostic prediction in HCC, while it can be considered a prediction model for clinical evaluation of immunotherapy response and chemotherapy sensitivity in HCC.


Sign in / Sign up

Export Citation Format

Share Document