prognostic prediction
Recently Published Documents


TOTAL DOCUMENTS

592
(FIVE YEARS 394)

H-INDEX

26
(FIVE YEARS 8)

2022 ◽  
Vol 11 ◽  
Author(s):  
Leyi Zhang ◽  
Jun Pan ◽  
Zhen Wang ◽  
Chenghui Yang ◽  
Wuzhen Chen ◽  
...  

Breast cancer lung metastasis has a high mortality rate and lacks effective treatments, for the factors that determine breast cancer lung metastasis are not yet well understood. In this study, data from 1067 primary tumors in four public datasets revealed the distinct microenvironments and immune composition among patients with or without lung metastasis. We used multi-omics data of the TCGA cohort to emphasize the following characteristics that may lead to lung metastasis: more aggressive tumor malignant behaviors, severer genomic instability, higher immunogenicity but showed generalized inhibition of effector functions of immune cells. Furthermore, we found that mast cell fraction can be used as an index for individual lung metastasis status prediction and verified in the 20 human breast cancer samples. The lower mast cell infiltrations correlated with tumors that were more malignant and prone to have lung metastasis. This study is the first comprehensive analysis of the molecular and cellular characteristics and mutation profiles of breast cancer lung metastasis, which may be applicable for prognostic prediction and aid in choosing appropriate medical examinations and therapeutic regimens.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Ke-Yun Zhu ◽  
Yao Tian ◽  
Ying-Xi Li ◽  
Qing-Xiang Meng ◽  
Jie Ge ◽  
...  

Abstract Background Krüppel‐like factors (KLFs) are zinc finger proteins which participate in transcriptional gene regulation. Although increasing evidence indicate that KLFs are involved in carcinogenesis and progression, its clinical significance and biological function in breast cancer are still limited. Methods We investigated all the expression of KLFs (KLF1-18) at transcriptional levels by using Oncomine and Gene Expression Profiling Interactive Analysis (GEPIA). The mRNA and protein expression levels of KLFs were also determined by using RT-qPCR and immunohistochemistry, respectively. CBioPortal, GeneMANIA and STRING were used to comprehensive analysis of the molecular characteristics of KLFs. The clinical value of prognostic prediction based on the expression of KLFs was determined by using the KM plotter. The relevant molecular pathways of KLFs were further analyzed by using Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Finally, we investigated the effect of KLF2 and KLF15 on biological behavior of breast cancer cells in vitro. Results The expression of KLF2/4/6/8/9/11/15 was significantly down-regulated in breast cancer. The patients with high KLF2, KLF4 or KLF15 expression had a better outcome, while patients with high KLF8 or KLF11 had a poor prognosis. Furthermore, our results showed that KLF2 or KLF15 can be used as a prognostic factor independent on the other KLFs in patients with breast cancer. Overexpression of KLF2 or KLF15 inhibited cell proliferation and migration, and blocked cell cycle at G0/G1 phase, resulting in cell apoptosis. Conclusions KLF2 and KLF15 function as tumor suppressors in breast cancer and are potential biomarkers for prognostic prediction in patients with breast cancer.


2022 ◽  
Vol 11 ◽  
Author(s):  
Min Yang ◽  
Bide Zhao ◽  
Jinghan Wang ◽  
Yi Zhang ◽  
Chao Hu ◽  
...  

Core Binding Factor (CBF)-AML is one of the most common somatic mutations in acute myeloid leukemia (AML). t(8;21)/AML1-ETO-positive acute myeloid leukemia accounts for 5-10% of all AMLs. In this study, we consecutively included 254 AML1-ETO patients diagnosed and treated at our institute from December 2009 to March 2020, and evaluated molecular mutations by 185-gene NGS platform to explore genetic co-occurrences with clinical outcomes. Our results showed that high KIT VAF(≥15%) correlated with shortened overall survival compared to other cases with no KIT mutation (3-year OS rate 26.6% vs 59.0% vs 69.6%, HR 1.50, 95%CI 0.78-2.89, P=0.0005). However, no difference was found in patients’ OS whether they have KIT mutation in two or three sites. Additionally, we constructed a risk model by combining clinical and molecular factors; this model was validated in other independent cohorts. In summary, our study showed that c-kit other than any other mutations would influence the OS in AML1-ETO patients. A proposed predictor combining both clinical and genetic factors is applicable to prognostic prediction in AML1-ETO patients.


2022 ◽  
Vol 2022 ◽  
pp. 1-27
Author(s):  
Wen Lv ◽  
Qi Yao

Background. Hepatocellular carcinoma (HCC) is one of the most heterogeneous malignant tumors that have been discovered so far, which makes the prognostic prediction difficult. The hypoxia, angiogenesis, and immunity-related genes (HAIRGs) are closely related to the development of liver cancer. However, the prognostic and treatment effect of hypoxia, angiogenesis, and immunity-related genes in HCC continues to be further clarified. Methods. The gene expression quantification data and clinical information in patients with liver cancer were downloaded from the TCGA database, and HAIRG signature was built by using the least absolute shrinkage and selection operator (LASSO) technique. Patient from the ICGC database validated the model. Then, tumor immune dysfunction and exclusion (TIDE) algorithm was applied to estimate the clinical response to immunotherapy and the sensitivity of drugs was evaluated by the half-maximal inhibitory concentration (IC50). Result. The HAIRGs were identified between the HCC patients and normal patients in the TCGA database. In univariate Cox regression analysis, seventeen differentially expressed genes (DEGs) were associated with overall survival (OS). An eight HAIRG signature model was constructed and was used to divide the patients into two groups according to the median value of the risk score base on the TCGA dataset. Patients in the high-risk group had a significant reduction in OS compared to those in the low-risk group ( P < 0.001 in the TCGA, P < 0.001 in the ICGC). For TCGA and ICGC databases of univariate Cox regression analyses, the risk score was used as an independent predictor of OS ( HR > 1 , P < 0.001 ). Functional analysis showed that the relevant immune pathways and immune responses were enriched, cellular component analysis showed that the immunoglobulin complex and other related substances were enriched, and immune status existed a difference in the high- and low-risk groups. Then, the tumor immune dysfunction and exclusion (TIDE) algorithm presented differences in immune response in the high- and low-risk groups ( P < 0.05 ), and based on drug sensitivity prediction, patients in the high-risk group were more sensitive to cisplatin compared to those in the low-risk group in both the TCGA and ICGC cohorts ( P < 0.05 ). Conclusions. HAIRG signature can be utilized for prognostic prediction in HCC, while it can be considered a prediction model for clinical evaluation of immunotherapy response and chemotherapy sensitivity in HCC.


2022 ◽  
Author(s):  
Shinya Kato ◽  
Norikatsu Miyoshi ◽  
Shiki Fujino ◽  
Soichiro Minami ◽  
Chu Matsuda ◽  
...  

Abstract Purpose Inflammation and nutritional status are known to be associated with the prognosis of several malignancies. Herein, we attempted to develop inflammation–nutrition scores and predict the prognosis of stage III colorectal cancer (CRC). Methods This retrospective study included 262 patients with stage III CRC who underwent curative surgery and were divided into two groups: a training set (TS) of 162 patients and a validation set (VS) of 100 patients. In the TS, clinicopathological factors were tested using a Cox regression model, and the Kansai prognostic score (KPS) was assessed by 1 point each for <3.5 g/dL albumin level, >450 monocyte counts, and <1.65 × 105 platelet counts, which were associated with disease-free survival (DFS). Using KPS, DFS and overall survival (OS) were validated in VS. Results The C-indices of KPS to predict DFS and OS in TS were 0.707 and 0.772. It was validated in VS that the C-indices of KPS to predict DFS and OS were 0.618 and 0.708, respectively. A high KPS was a significant predictor of DFS and OS. Conclusion KPS serves as a new model for the prognosis of patients with stage III CRC.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Mariam Laatifi ◽  
Samira Douzi ◽  
Abdelaziz Bouklouz ◽  
Hind Ezzine ◽  
Jaafar Jaafari ◽  
...  

AbstractThe purpose of this study is to develop and test machine learning-based models for COVID-19 severity prediction. COVID-19 test samples from 337 COVID-19 positive patients at Cheikh Zaid Hospital were grouped according to the severity of their illness. Ours is the first study to estimate illness severity by combining biological and non-biological data from patients with COVID-19. Moreover the use of ML for therapeutic purposes in Morocco is currently restricted, and ours is the first study to investigate the severity of COVID-19. When data analysis approaches were used to uncover patterns and essential characteristics in the data, C-reactive protein, platelets, and D-dimers were determined to be the most associated to COVID-19 severity prediction. In this research, many data reduction algorithms were used, and Machine Learning models were trained to predict the severity of sickness using patient data. A new feature engineering method based on topological data analysis called Uniform Manifold Approximation and Projection (UMAP) shown that it achieves better results. It has 100% accuracy, specificity, sensitivity, and ROC curve in conducting a prognostic prediction using different machine learning classifiers such as X_GBoost, AdaBoost, Random Forest, and ExtraTrees. The proposed approach aims to assist hospitals and medical facilities in determining who should be seen first and who has a higher priority for admission to the hospital.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ruotong Tian ◽  
Yimin Li ◽  
Minfeng Shu

Circadian disruption in tumorigenesis has been extensively studied, but how circadian rhythm (CR) affects the formation of tumor microenvironment (TME) and the crosstalk between TME and cancer cells is largely unknown, especially in gliomas. Herein, we retrospectively analyzed transcriptome data and clinical parameters of glioma patients from public databases to explore circadian rhythm-controlled tumor heterogeneity and characteristics of TME in gliomas. Firstly, we pioneered the construction of a CR gene set collated from five datasets and review literatures. Unsupervised clustering was used to identify two CR clusters with different CR patterns on the basis of the expression of CR genes. Remarkably, the CR cluster-B was characterized by enriched myeloid cells and activated immune-related pathways. Next, we applied principal component analysis to construct a CRscore to quantify CR patterns of individual tumors, and the function of the CRscore in prognostic prediction was further verified by univariate and multivariate regression analyses in combination with a nomogram. The CRscore could not only be an independent factor to predict prognosis of glioma patients but also guide patients to choose suitable treatment strategies: immunotherapy or chemotherapy. A glioma patient with a high CRscore might respond to immune checkpoint blockade, whereas one with a low CRscore could benefit from chemotherapy. In this study, we revealed that circadian rhythms modulated tumor heterogeneity, TME diversity, and complexity in gliomas. Evaluating the CRscore of an individual tumor would contribute to gaining a greater understanding of the tumor immune status of each patient, enhancing the accuracy of prognostic prediction, and suggesting more effective treatment options.


2022 ◽  
Vol 15 ◽  
Author(s):  
Jia-Qi Chen ◽  
Nuo Zhang ◽  
Zhi-Lin Su ◽  
Hui-Guo Qiu ◽  
Xin-Guo Zhuang ◽  
...  

Glioblastoma multiforme (GBM) is the most malignant and multiple tumors of the central nervous system. The survival rate for GBM patients is less than 15 months. We aimed to uncover the potential mechanism of GBM in tumor microenvironment and provide several candidate biomarkers for GBM prognosis. In this study, ESTIMATE analysis was used to divide the GBM patients into high and low immune or stromal score groups. Microenvironment associated genes were filtered through differential analysis. Weighted gene co-expression network analysis (WGCNA) was performed to correlate the genes and clinical traits. The candidate genes’ functions were annotated by enrichment analyses. The potential prognostic biomarkers were assessed by survival analysis. We obtained 81 immune associated differentially expressed genes (DEGs) for subsequent WGCNA analysis. Ten out of these DEGs were significantly associated with targeted molecular therapy of GBM patients. Three genes (S100A4, FCGR2B, and BIRC3) out of these genes were associated with overall survival and the independent test set testified the result. Here, we obtained three crucial genes that had good prognostic efficacy of GBM and may help to improve the prognostic prediction of GBM.


2022 ◽  
Vol 2022 ◽  
pp. 1-30
Author(s):  
Aimin Jiang ◽  
Yewei Bao ◽  
Anbang Wang ◽  
Wenliang Gong ◽  
Xinxin Gan ◽  
...  

Rationale. Patients with clear cell renal cell cancer (ccRCC) may have completely different treatment choices and prognoses due to the wide range of heterogeneity of the disease. However, there is a lack of effective models for risk stratification, treatment decision-making, and prognostic prediction of renal cancer patients. The aim of the present study was to establish a model to stratify ccRCC patients in terms of prognostic prediction and drug selection based on multiomics data analysis. Methods. This study was based on the multiomics data (including mRNA, lncRNA, miRNA, methylation, and WES) of 258 ccRCC patients from TCGA database. Firstly, we screened the feature values that had impact on the prognosis and obtained two subtypes. Then, we used 10 algorithms to achieve multiomics clustering and conducted pseudotiming analysis to further validate the robustness of our clustering method, based on which the two subtypes of ccRCC patients were further subtyped. Meanwhile, the immune infiltration was compared between the two subtypes, and drug sensitivity and potential drugs were analyzed. Furthermore, to analyze the heterogeneity of patients at the multiomics level, biological functions between two subtypes were compared. Finally, Boruta and PCA methods were used for dimensionality reduction and cluster analysis to construct a renal cancer risk model based on mRNA expression. Results. A prognosis predicting model of ccRCC was established by dividing patients into the high- and low-risk groups. It was found that overall survival (OS) and progression-free interval (PFI) were significantly different between the two groups ( p < 0.01 ). The area under the OS time-dependent ROC curve for 1, 3, 5, and 10 years in the training set was 0.75, 0.72, 0.71, and 0.68, respectively. Conclusion. The model could precisely predict the prognosis of ccRCC patients and may have implications for drug selection for ccRCC patients.


Sign in / Sign up

Export Citation Format

Share Document